

DistClassiPy

A new distance-based classifier to find rare gems in time-domain astronomy.

Introduction

The rise of synoptic sky surveys has ushered in a new era of big data in time-domain astronomy, making data science essential. While tree-based methods (e.g., Random Forest) are the standard in astrophysical classification, the direct use of distance metrics has remained unexplored.

We looked at 18 different distance metrics to classify light curves of variable stars and transients and make recommendations for efficient and physically interpretable classification algorithms.

Data & Feature Extraction

We use light curves from the Zwicky Transient Facility (ZTF) including four types of variable stars: Cepheid (CEP), RR Lyrae (RR), RR Lyrae Type c (RRc), Deta Scuti (DSCT).

We extract 112 features from these light curves using the lc_classifier python package (ALeRCE, Jainaga+2021).

We perform dimensionality reduction tailored to the classification problem using Sequential Feature Selection. This results in a handful set of essential features.

We developed a method and a package to classify light curves using 18 distance metrics, with:

- State-of-the-art accuracy
- Significant computational gains
- Augmented interpretability
- Customizable to your problem

Distance Metrics

A distance metric is any mathematical function that obeys the following rules:

- $d(x,y) = 0 \iff x = y$ (identity of indiscernibles)
- d(x, y) = d(y, x) (symmetry)
- $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)

We can use different distance metrics for machine learning! *e.g.*, Euclidean, Canberra, Clark, etc.

Siddharth Chaini,¹ Ashish Mahabal,² Ajit Kembhavi,³ Federica B. Bianco¹

¹University of Delaware, ²Caltech, ³IUCAA, Pune

Algorithm

Training:

- 1: **for** each class *C* in the training set **do**
- for each feature F in class C do
- Calculate the median M_F^C of feature F in class C.
- Calculate the standard deviation σ_F^C of feature F in class C.
- end for
- Save the median set $\{M_{F}^{C}\}$ and standard deviation set $\{\sigma_F^C\}$ for class C.
- 7: **end for**

Results

Classification Performance

Testing:

- 1: Choose a distance metric 2: for each test object do
- for each class C in the training set do
- for each feature F in class C do
- Scale the test object feature by dividing it by σ_F^C , which was calculated in the training step.
- Scale the median set $\{M_F^C\}$ features by dividing them by σ_F^C .
- end for
- Calculate the distance D_C between the scaled test object and the median set $\{M_F^C\}$ for class C, scaled by $\{\sigma_F^C\}$.
- Save D_C for class C.
- end for
- Choose the class C_{\min} for which the distance $D_{C_{\min}}$ is the smallest.
- Assign class C_{\min} as the predicted class for the test obkect.
- 13: **end for**

2 ·

What's next?

1. Expanding DistClassiPy to transients: designing feature extraction

For transient classification, we need to extract different features. Using the *PLAsTiCC* & *ELAsTiCC* (Hlozek+2020; Narayan+2023) datasets, we preprocess the light curves with 2D Gaussian Processes, and generate features with an Autoencoder – the neural network latent space will be our new feature set.

2. Hunting for anomalies with DistClassiPy

An anomaly may be far away from all other or close to multiple clusters. Our classifier can be used for anomaly detection: anomalies should have ambiguous classifications sitting at the tail of known distribution families under multiple distance choices.

But DistClassiPy is Customizable

We evaluated our classifier on 558 objects each across the 4 classes (CEP, RR, RRc, DSCT), for all 18 distance metrics.

Classifier	F ₁ Score	Time Taken
DistClassiPy with Clark	92%	0.004 s
DistClassiPy with Canberra	91%	0.026 s
Random Forest	92%	0.188 s

Canberra and Clark performed as well as a Random Forest - but faster!

Note: The computational time was computed by training & testing on a mock dataset consisting of 5000 samples and 100 features and was averaged over 5 iterations.

Different distance metrics perform better for different kinds of objects.

For *e.g.*, different metrics perform differently for objects having a different *r*-band period.

So, you can choose the distance metric that's best for your object of interest!

		Quantiles for F	Period_band_r	~	100
Euclidean –	80	72	72	92	- 100
Braycurtis –	96	93	85	89	
Canberra –	97	96	85	82	- 95
Cityblock –	93	71	76	92	
Chebyshev –	83	61	73	85	
Clark –	97	89	80	91	- 90
Correlation -	88	68	79	87	
Cosine –	86	74	80	90	- 85 🖇
Hellinger –	98	88	89	91	No.
Jaccard –	99	90	79	81	nra
Lorentzian -	96	78	79	93	- 80 8
Marylandbridge -	82	77	74	63	
Meehl –	82	68	74	93	- 75
Motyka –	96	93	85	89	10
Soergel –	96	93	85	89	
Wave_Hedges -	96	96	86	83	- 70
Kulczynski –	96	93	85	89	
Add_Chisq -	97	89	91	90	- 65
_	Quantile 1	Quantile 2	Quantile 3	Quantile 4	- 00

Reference

[1] Chaini, S. et al. (2024), arXiv:2403.12120 (under review, A&C).

