Machine Learning and Galaxies John F Wu STScl · JHU

Rare Gems in Big Data

2024-05-21

Roadmap

I. The growth and evolution of galaxies
 II. Studying satellite galaxies with CNNs
 III. Learning relationships with graphs

Roadmap

I. The growth and evolution of galaxies
II. Studying satellite galaxies with CNNs
III. Learning relationships with graphs

Galaxies grow via gas accretion, star formation, and merging

Galaxies grow via gas accretion, star formation, and merging

Galaxies grow via gas accretion, star formation, and merging

Heavy element production follows star formation

Time, t

 $M_{\star} \propto_{0} \int t_{obs} \Psi(t) dt$ $Z_{gas} \propto_{0} \int t_{obs} \phi(t) dt$

Physical processes are imprinted on galaxies' morphologies

An image is more informative than a row in a photometric catalog

g mag	<i>r</i> mag
17.50	16.99
17.47	16.97
17.50	17.00
17.46	16.95
17.43	16.93
17.48	16.97
17.42	16.92
17.46	16.95
17.47	16.97

Legacy Survey DR9 (Dey+ 19)

An image is more informative than a row in a photometric catalog

<i>r</i> mag
16.99
16.97
17.00
16.95
16.93
16.97
16.92
16.95
16.97

Roadmap

I. The growth and evolution of galaxies
II. Studying satellite galaxies with CNNs
III. Learning relationships with graphs

Roadmap

I. The growth and evolution of galaxies
 II. Studying satellite galaxies with CNNs
 III. Learning relationships with graphs

CNNs are just sequential morphological feature finders

Just a sample of what can be done with CNNs...

Wu & Boada 19; Wu 2020; Wu & Peek 2020; Holwerda+ 21; Guo+22

Identifying dwarf (satellite) galaxies is hard...

... but important for galaxy formation theory.

SAGA is the premier spectroscopic survey of low-z satellites

378 satellites around 101 host galaxies using >75,000 spectra

Mao+24, Geha+24, Wang+24

A CNN robustly selects low-z (z < 0.03) galaxies

SAGA training sample

A CNN robustly selects low-z (z < 0.03) galaxies

SAGA training sample

xSAGA test sample

We can validate CNN performance with observations!

~ 19% (Tier 1) ~ 1.3% (Tier 2) ~ 0.5% (Tier 3)

from DESI LOW-Z spectroscopy!

Darragh-Ford+ 23

SDSS found bright z < 0.03 galaxies

Here are another >100k low-z candidates found via CNN

xSAGA: >100x as many satellite systems as before

Studying satellites around z~0.03 Milky Way analogs

spectroscopically confirmed

NSAID 407998 *z* = 0.029

1237664875657036652 1237664875657232593 z = ??? 1237664667888124328 1237664837538611823 z = ??? z = ??? 1237664837001675212 z = ???

no redshift confirmed

NGC 1234 *z* = 0.020

Studying z ~ 0.008 satellite groups and their dwarfs

NGC 5326 *z* = 0.008

spectroscopically confirmed

no redshift confirmed

Exquisite statistics on satellite radial profiles with host mass!

Exquisite statistics on satellite radial profiles with host mass!

Wu+ 22

Satellites probe the halo accretion history

Roadmap

I. The growth and evolution of galaxies
 II. Studying satellite galaxies with CNNs
 III. Learning relationships with graphs

Roadmap

I. The growth and evolution of galaxies
II. Studying satellite galaxies with CNNs
III. Learning relationships with graphs

Galaxies don't grow in isolation

Galaxies don't grow in isolation – they have neighbors!

a few Mpc

Overdensity averaged over some constant radius

Overdensity

averaged over some constant radius

DisPerSE

Discrete Persistent Structure Extractor

Overdensity

averaged over some constant radius

DisPerSE

Discrete Persistent Structure Extractor

Graph Neural Networks

learn everything empirically

Environment tells you which galaxy lives in which halo

Model with no environment Model with DisPerSE cosmic web Model with spherical overdensity

> Wu et al. 2024 (subm.) arXiv:2402.07995

GNNs are most informative at capturing environment

Model with no environment Model with DisPerSE cosmic web Model with spherical overdensity

Graph neural network

Wu et al. 2024 (subm.) arXiv:2402.07995

GNNs are most informative at capturing environment

Model with no environment Model with DisPerSE cosmic web Model with spherical overdensity

Graph neural network

Wu et al. 2024 (subm.) arXiv:2402.07995

Anomaly detection at scale with graph learning

M91 – Legacy Survey DR10 grz

Anomaly detection at scale with graph learning

M91 – Legacy Survey DR10 grz + DESI bright time fiber targets

I. We can learn a lot about galaxies using advanced ML methods and astronomical survey data.

- I. We can learn a lot about galaxies using advanced ML methods and astronomical survey data.
- II. The morphologies of galaxies tells us about their physical evolution – and helps to identify rare gems!

- I. We can learn a lot about galaxies using advanced ML methods and astronomical survey data.
- II. The morphologies of galaxies tells us about their physical evolution – and helps to identify rare gems!
- III. xSAGA/DESI LOWZ gives us an entirely new way to study substructure of the low-redshift cosmos.

- I. We can learn a lot about galaxies using advanced ML methods and astronomical survey data.
- II. The morphologies of galaxies tells us about their physical evolution and helps to identify rare gems!
- III. xSAGA/DESI LOWZ gives us an entirely new way to study substructure of the low-redshift cosmos.
- IV. GNNs powerful for learning relationships, like the galaxy-halo-environment connection.

DESI LOW-Z: survey design

Darragh-Ford+ 23

DESI LOW-Z: target densities

Table 1 Target Density for the Three Tiers in the LOW-Z Survey						
Tier	Y1 Targets All	Y1 Targets BGS Overlap	Y1 Observed All	Y1 Observed BGS Overlap	Y2 Targets All	Y2 Targets BGS Overlap
Tier 1 Tier 2 Tier 3A Tier 3B $z \leq 0.03$	$22 \text{ deg}^{-2} \\ 80 \text{ deg}^{-2} \\ 120 \text{ deg}^{-2} \\ 80 \text{ deg}^{-2} \\ \cdots$	6 deg ⁻² 120 deg ⁻² 	11 deg^{-2} 41 deg^{-2} 120 deg^{-2} 30 deg^{-2} 3.7 deg^{-2}	6 deg^{-2} 120 deg^{-2} 1.6 deg^{-2}	97 deg ⁻² 325 deg ⁻² 	1.7 deg ⁻² 1.3 deg ⁻²

Notes. Columns 1 and 2: submitted target densities for the Y1 survey. Columns 3 and 4: observed target densities for Y1 survey. All objects in Columns 1–4 are between the Y1 LOW-Z magnitude cuts of 19 < r < 21. Columns 5 and 6: submitted target densities for the Y2 survey. All objects are between the Y2 LOW-Z magnitude cuts of 19 < r < 21. The full BGS target density is 1400 targets per square degree (864 deg⁻² in the Bright sample and 533 deg⁻² in the Faint sample).

Table 2 Color Cuts for the BGS Bright and BGS Faint Samples (Hahn et al. 2022)					
BGS Sample	r	$r_{ m fib}$	Color	Density	
BGS Bright BGS Faint	r < 19.5 19.5 < r < 20.175	$r_{\rm fib} < 22.9$ $r_{\rm fib} < 21.5 \text{ if color} \ge 0 \text{ or } r_{\rm fib} < 20.75$	$(z - W1) - 1.2(g - r) + 1.2$	864 deg^{-2} 533 deg^{-2}	

Darragh-Ford+ 23

DESI LOW-Z: target densities

Table 3 Observed Number of Targets in LOW-Z Survey Split by Tier and Redshift				
	<i>z</i> < 0.01	<i>z</i> < 0.03	All Redshifts	
One-Percent Survey				
Tier 1	26	382	2015	
Tier 1 (excl. BGS)	12	167	992	
Tier 2	5	100	7445	
Tier 3	3	179	27,021	
Tier 3 (excl. BGS)	2	37	5906	
Main Survey				
Tier 1	53	875	4618	
Tier 1 (excl. BGS)	4	34	163	
Tier 2	1	22	2034	
Tier 3	3	461	100,353	
Tier 3 (excl. BGS)	0	4	1413	

CNNs can estimate spectroscopic properties like metallicity!

Wu & Boada 19

Re-constructing the MZR without any spectroscopy

Stellar mass

Wu & Boada 19

We know what CNNs are "looking" at!

Predict the entire optical spectrum from Pan-STARRS imaging

Wu & Peek 20

Passing the test: a weak AGN detected in an outlier galaxy

70 kpc

Holwerda+ 21

Passing the test: a weak AGN detected in an outlier galaxy

 VIRUS-P + KPNO 2.1m + Mount Lemmon 60in
 CNN prediction
 MMT Binospec

Holwerda+ 21