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Outline

> Methods:

Linear methods: fast and often optimal

Noise: correlated, often non-Gaussian

Look elsewhere effect: how to account for it

Optimal test statistic

The role of priors

Non-linear methods: dimensionality reduction (e.g. AutoEncoders)
Dimensionality preserving (e.g. Normalizing Flows)

Anomaly detection (unknown unknowns)

> Applications:

O O 0O O 0O 0O O O

O  Searching for exoplanets and eclipsing binaries
O  Searching for binary black holes

O Analyzing Large Scale Structure of the Universe




Exoplanet detection in Kepler data: challenges

Non-gaussian outliers
Stellar variability

Gaps

Rolling bands

Flares, drops

Eclipsing binaries

Third light contamination
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Stellar variability

Stars are variable with “red” power spectrum (a lot of power on large scales)
We have to deal with gaps in the data: inpainting

i Kepler 1279 g Kepler 1517
5 " - data
5 * -, ; 3 — FEGP
Ak 2 * N . - 2] e filled
gy 2 - " .-’......s a . . " illed gaps
i SR L g g L &
N g . oy TNy 4 ot ® S . h
'F M Fosber ‘1 X - - .o /4._ f“'h LY. % :‘-"o' - )
x 0 TN R RO S Wir.. - Mt ! B i 2 KY 0
._.—? oo ‘. b (> *'. o .of' e ¢ "‘.i.b'& '.:. I 0’;"0:. v ;
" s .".g . Jos TN % ’.‘-‘b‘ PR A B
_1 '. :.'. -o."’ '. 2 :"‘; (8e = ". 3 - ¢ LN . —1
* . . o BRI e e 3" g
& R PV, - 7 : o u’,ur
) L BN o TOEel —24
. .'ol.. 's. " ”
—3 5 -3
_4 Ll | ' T _"1 ] I 1 L\l
0 10 20 30 40 0 2 4 6 8

time[days] + HJD - 2454833 + 131.513 time[days] + HJD - 2454833 + 317.539



Linear methods

We are searching for a signal that is an unknown amplitude times a
known time series profile (known unknown), searched over
unknown period and phase using folded analysis for exoplanets
+ For Gaussian noise we have an analytic solution: no optimization
required, can be very fast

This is called matched filter

Often we search over many templates (can be millions for
gravity wave searches)




Matched filter for exoplanet detection in Kepler data

inverse noise weighting: SNR = 7! {_T{d};ﬂs}}
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Does it matter? Yes, it reduces
the number of false positives!

SNR of the noise
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Zihao Wu

Eclipsing Binaries

* V-shape transits

* Prior odds ~ demographics
of the small radius ratio
eclipsing binaries

* Villanova Kepler Eclipsing
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Data

and stellar variability model

Variability-free data and EB model
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How do we distinguish between exoplanets
and eclipsing binaries?
Bayes Factor: ratio of evidences for the two hypotheses

What is Bayes evidence: it combines the quality of the fit with the trials factor
(Occam’s razor, Look Elsewhere effect)

What is trials factor? If you try to detect something and you try it many times you
need to account for the fact that it can happen by chance

Typically we scan over the prior of the parametrization of the hypothesis: e.g.
period, phase, amplitude, transit duration for exoplanets

We developed a new parametrizations for eclipsing binaries

Each time we move by one sigma in each of the parameters we incur a new trials
factor

This can be very large (100 million!) for exoplanets where we scan over periods of
years, but the error on period and phase is minutes



Bayes factor between null hypothesis and
signal

Bayes factor (expensive to compute it) is also useful to quantify the false
positive rate (frequency of pure noise events at high SNR), but can be
misleading if the noise properties are poorly understood (e.g.
non-Gaussian noise)

Even then Bayes Factor can be a powerful test statistic (optimal if the
priors are chosen well)

This is important since for SNR test statistic we may have false positive
contamination

For example: maybe true signal is lurking at low exoplanet periods, but
long periods have larger trials factor and hence produce more false
positives at larger SNR: Bayes factor corrects for this



How to quantify false positive rate if you do
not have reliable simulations?

We (Robnik & Seljak, in prep) developed a new method that gives the same false
positive rate as the main search, but eliminates the exoplanet signal
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Application to Kepler data

We see a slight excess in
the real signal: we can
statistically quantify the
excess in the regime where
individual detections are
not possible (important for
demographics of habitable
zone planets, work in
progress)
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Several groups (e.g. Graham etal, Charisi
etal) have claimed a detection of the
SMBHB signal (PTF, Catalina)

Problem: false positive rate is quantified
using Gaussian correlated noise

Problem: SNR is not computed using
matched filter inverse noise weighting

id: 263798 id: 316958 id: 304690
19.25 - 19:5

Problem: data sampling very uneven, *°
observed periods are long
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SMBHB Bayes factor has best ROC

Quasar with white Gaussian noise
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Application to PTF data (preliminary!)
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Lessons learned

Searching for rare gems is hard:

1)

2)

Account for Look Elsewhere Effect (trials factor): how
many trials have you performed?

Estimate priors and ideally to use Bayes Factor as a test
statistic even if you use frequentist methods to
quantify the false positive rate

Use the data directly as a noise simulator to quantify
the false positives

Try linear methods before doing nonlinear ML methods
Bayes Factor search with matched filters is doable
even for Rubin SMBHB and Kepler/TESS exoplanets



Cosmological analysis based on summary statistics

summary statistics S cosmological parameter y
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> Cosmological analysis based on two-point summary statistics: p(Sly) — p(y|S) = p(S|y)p(y)/p(S)

o  For non-gaussian data, usually leads to information loss

Credit: Jeffrey et al. 2021, Dalal et al. 2023 18



Field-level cosmological inference

cosmological parameter y

data x
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> Field-level inference
o  Pro: No information loss due to data compression.
o Deep learning allows us to directly extract information at the field level
(simulation-based inference)
Credit: Jeffrey et al. 2021, Dalal et al. 2023 19



Simulation Based Inference (SBI)

Amortized posterior / Amortized likelihood \
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Green box: machine learning
models (normalizing flows) that
take in {x,0}, pairs and estimate

p(x|0) or p(O]x).

Potential issues of SBI:

1. The simulations may not be
accurate (distribution shift)

2. The ML model is a black box
and lacks interpretability

(”mnf%et al. 2020 20



Normalizing Flows
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> Bijective mapping f between data x and latent variable z (z = {(x), z ~ n(z))

o Evaluate density: p(x) = n(f(x)) |det(df/dx)|
o Sample: x = f'1(2) (z~n(2))

Credit:
https://lilianwen
g.github.io/lil-lo
9/2018/10/13/fl
ow-based-deep
-generative-mo
dels.html
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What can Normalizing Flows do for Astronomy?

Normalizing flows provide a
powerful framework for
high-dimensional density
estimation (likelihood) and
sampling

<

4 Extract physical information (simulation-based inference)
Fast sample generation
Detect systematic effect (distribution shift)

Anomaly detection

Search for new physics/asrophysics

22



Test 1: Goodness-of-fit test / Qut-of-distribution detection

Training simulations
MustrisTNG — > SIMBA

Discriminative models
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Truth

Biased parameter constraints due to distribution shifts, and we don’t know it!




Test 1: Goodness-of-fit test / Qut-of-distribution detection

Training simulations

Generative models

— likelihood p(x|y)

Test data / observation /

24




Test 1: Goodness-of-fit test / Qut-of-distribution detectlon

HlustrisTNG — > SIMBA

Predictlo
5

Training simulations

Generative models

Prediction

— likelihood p(x|y)
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Test 1: Goodness-of-fit test / Qut-of-distribution detection

Training simulations

Test data / observation

Generative models

ection

Generative NF models enable ;‘f | |
goodness-of-fit test to improve the =

robustness of analysis.
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Multiscale consistency test with Multiscale Flow

> Motivation: Multiscale analysis for robust constraints

o Different scales are governed by different physics / systematics: the numerical / astrophysical
effects normally happens on small scales, and PSF may influence very large scales

o  Separate and compare the information (likelihood) of different scales, and identify the part of
the data that is contaminated by systematics

> Wavelet decomposition: recursively apply low-pass filters (scaling functions) and high-pass filters
(wavelet functions) to the data. In each iteration, the data x with resolution 2" is decomposed into a
low-resolution approximation X, and detail coefficients of the remaining signal x

n-1,extra

Dai, B. and Seljak, U., 2023. Multiscale Flow for Robust and Optimal Cosmological Analysis. arXiv preprint arXiv:2306.04689. 27
D 00 e



Consider a cosmological field with 256 resolution:

X256

log p(X,4lY)



Consider a cosmological field with 256 resolution:

X X

256 128
log p(X,4lY)
=108 P(X,; 5 X, 55, exiral¥) + €
=108 P(X55]Y) + 108 P(X, g ¢y1ralX 15
C > 1$ 128
X128,extra L128 extra
2
leS,extra
3
x128,extra

PN

a21
a31

N

a22
a32

Cl
C

C,

1 1

4 4
a23 Q24
a33 Q34
aq4




Multiscale flow

> Consider a cosmological field with 2567 resolution:
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Multiscale flow

> Consider a cosmological field with 2567 resolution:
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Sample generation & super-resolution

e power spectrum e kappa probability distribution
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Distribution shift detection — noise miscalibration

e Consistent posteriors from different scales e Inconsistent small scale posterior
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Interpretability

“Where is the extra information coming from?”

29

“You need to show why the other cosmological models are ruled out

Input WL map

Generative models
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“Where is the extra information coming from?”

“You need to show why the other cosmological models are ruled out”

Input WL map Generated sample Difference
Generative models
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The same realization (latent Generated sample - input
B code) as the input map, but map
0,=0.76 £0.02 . !
assuming a different
cosmology



“Where is the extra information coming from?”

“You need to show why the other cosmological models are ruled out”

Input WL map Generated sample Difference
Generative models
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“Where is the extra information coming from?” My model tells me that the
halos from high o,

“You need to show why the other cosmological models are ruled out” :
cosmology are too massive!

Input WL map Generated sample
Generative models

00000000 1

MCMC
The same realization (latent Generated sample - input
code) as the input map, but map
= +
0y =0.76£0.02 assuming a different
cosmology



Euclid telescope

Roman space telescope




constraining power (figure of merit)
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HSC weak lensing analysis with M

Cosmological — .
constraints

Tests on mock data: significant improvement compared
to traditional power spectrum analysis, after considering
various systematic uncertainties

From left to right:
o the mean present-day matter density
o  ameasure of the homogeneity of the Universe
o 2 effective baryonic parameter
o 2 intrinsic alignment parameter
o 2 parameter of redshift estimation uncertainty
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Probabilistic Auto-Encoder (PAE)

Boehm and Seljak 2020 (arxiv: 2006.05479)

Auto-Encoder
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PAE for SN1A spectroscopy
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PAE gives a generative model for SN1A
Inpainting of incomplete data
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Anomaly detection
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PAE density and latent space position for
anomaly detection in SN1A spectra

log p(z) + const.

® 09dc-like ® 91T-like ® 91bg-like ® Extreme velocity

4- 09dc-like

4 91T-like

4- 91bg-like

4- Extreme velocity

0- ® o0 Y o ... o®* %
o e’ °sd ., oo J..%‘ e o
-2 N ’ @ g 3’ - P
® ® o 0
* ’.'k o‘ ol ° ; " e
] &o ) o
-4 b ‘ .. ® o e
° L °.
o 3 .. .12 ® :
—61 .9 [ ‘1; ‘11
éd
é
Ee é &
&% é é
0.00 0.02 0.04 0.06 0.08 0.10
Redshift

i é . 2 i 2 é .
¢ e - ety
B o: 25/ 4 r "f“ £
9 (0 e O * 10K St *
o o'b—t]:? o ‘—tt I ...0 4 133‘1
0 |
.
’ll | 1 'lpl
Z3 Vi)




Lessons learned

In cosmology we seek hidden information in non-Gaussian correlations of the
data: hidden gems are in correlations

Discriminative learning versus generative learning: generative harder to
train, but gives sample generation (simulations), likelihoods and outlier
detection

For generative models (e.g. MultiScale Flow) one can use likelihood and scale
dependent signal to identify anomalies

We are starting to see first applications of ML to cosmology data in weak
lensing (CNN, scattering transforms, MSF), with significant gains relative to
baseline summary statistic (power spectrum)



