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Outline
▷ Methods:

○ Linear methods: fast and often optimal
○ Noise: correlated, often non-Gaussian
○ Look elsewhere effect: how to account for it
○ Optimal test statistic
○ The role of priors
○ Non-linear methods: dimensionality reduction (e.g. AutoEncoders)
○ Dimensionality preserving (e.g. Normalizing Flows)
○ Anomaly detection (unknown unknowns)

▷ Applications:
○ Searching for exoplanets and eclipsing binaries
○ Searching for binary black holes
○ Analyzing Large Scale Structure of the Universe
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Exoplanet detection in Kepler data: challenges



Stellar variability
Stars are variable with “red” power spectrum (a lot of power on large scales)

We have to deal with gaps in the data: inpainting



Linear methods
We are searching for a signal that is an unknown amplitude times a 
known time series profile (known unknown), searched over 
unknown period and phase using folded analysis for exoplanets

+ For Gaussian noise we have an analytic solution: no optimization 
required, can be very fast

This is called matched filter

Often we search over many templates (can be millions for 
gravity wave searches)

 



Matched filter for exoplanet detection in Kepler data



Does it matter? Yes, it reduces 
the number of false positives!



Eclipsing binaries





How do we distinguish between exoplanets 
and eclipsing binaries?

Bayes Factor: ratio of evidences for the two hypotheses

What is Bayes evidence: it combines the quality of the fit with the trials factor 
(Occam’s razor, Look Elsewhere effect)

What is trials factor? If you try to detect something and you try it many times you 
need to account for the fact that it can happen by chance

Typically we scan over the prior of the parametrization of the hypothesis: e.g. 
period, phase, amplitude, transit duration for exoplanets

We developed a new parametrizations for eclipsing binaries

Each time we move by one sigma in each of the parameters we incur a new trials 
factor

This can be very large (100 million!) for exoplanets where we scan over periods of 
years, but the error on period and phase is minutes



Bayes factor between null hypothesis and 
signal

Bayes factor (expensive to compute it) is also useful to quantify the false 
positive rate (frequency of pure noise events at high SNR), but can be 
misleading if the noise properties are poorly understood (e.g. 
non-Gaussian noise)

Even then Bayes Factor can be a powerful test statistic (optimal if the 
priors are chosen well)

This is important since for SNR test statistic we may have false positive 
contamination

For example: maybe true signal is lurking at low exoplanet periods, but 
long periods have larger trials factor and hence produce more false 
positives at larger SNR: Bayes factor corrects for this



How to quantify false positive rate if you do 
not have reliable simulations? 
We (Robnik & Seljak, in prep) developed a new method that gives the same false 

positive rate as the main search, but eliminates the exoplanet signal 

On simulations it 
gives same FPR as

periodic signals 



Application to Kepler data
We see a slight excess in 
the real signal: we can 
statistically quantify the 
excess in the regime where 
individual detections are 
not possible (important for 
demographics of habitable 
zone planets, work in 
progress)



Supermassive Black hole binaries with 
periodograms in quasar variability data
Several groups (e.g. Graham etal, Charisi 
etal) have claimed a detection of the 
SMBHB signal (PTF, Catalina)

Problem: false positive rate is quantified 
using Gaussian correlated noise

Problem: SNR is not computed using 

matched filter inverse noise weighting  
Problem: data sampling very uneven, 
observed periods are long



SMBHB Bayes factor has best ROC
Classic 
periodogram is 
almost useless 
here because of 
QSO variability

We have modified 
the template to 
eliminate signal 



Application to PTF data (preliminary!)

No 
evidence of 
SMBHB 
signal!



Lessons learned
Searching for rare gems is hard: 

1) Account for Look Elsewhere Effect (trials factor): how 
many trials have you performed? 

2) Estimate priors and ideally to use Bayes Factor as a test 
statistic even if you use frequentist methods to 
quantify the false positive rate

3) Use the data directly as a noise simulator to quantify 
the false positives

4) Try linear methods before doing nonlinear ML methods
5) Bayes Factor search with matched filters is doable 

even for Rubin SMBHB and Kepler/TESS exoplanets



Cosmological analysis based on summary statistics

18Credit: Jeffrey et al. 2021, Dalal et al. 2023 

Compressing data x to 
summary statistics S

Gaussian likelihood on 
summary statistics S: p(S|y) 

▷ Cosmological analysis based on two-point summary statistics: p(S|y)          p(y|S) = p(S|y)p(y)/p(S)

○ For non-gaussian data, usually leads to information loss

cosmological parameter ysummary statistics S
data x



Field-level cosmological inference

▷ Field-level inference 

○ Pro: No information loss due to data compression.

○ Deep learning allows us to directly extract information at the field level 
(simulation-based inference)
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cosmological parameter y
data x

Credit: Jeffrey et al. 2021, Dalal et al. 2023 
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cosmological parametercosmological parameter

mock data (fields)mock data (fields)

p(x|θ)p(θ|x)

discriminative models generative models Cranmer et al. 2020

Simulation Based Inference (SBI)
Green box: machine learning 

models (normalizing flows) that 
take in {x,θ}i pairs and estimate 

p(x|θ) or p(θ|x).

Potential issues of SBI:

1. The simulations may not be 
accurate (distribution shift)

2. The ML model is a black box 
and lacks interpretability



Normalizing Flows
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Credit: 
https://lilianwen
g.github.io/lil-lo
g/2018/10/13/fl
ow-based-deep
-generative-mo
dels.html▷ Bijective mapping f between data x and latent variable z  (z = f(x), z ~ π(z))

○ Evaluate density: p(x) = π(f(x)) |det(df/dx)|

○ Sample: x = f-1(z)  (z ~ π(z))



What can Normalizing Flows do for Astronomy?

Extract physical information (simulation-based inference)

Fast sample generation

                             Detect systematic effect (distribution shift)
Anomaly detection         

                   Search for new physics/asrophysics
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Normalizing flows provide a 
powerful framework for 
high-dimensional density 

estimation (likelihood) and 
sampling



Test 1: Goodness-of-fit test / Out-of-distribution detection 
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Training simulations

Test data / observation

Discriminative models 

Biased parameter constraints due to distribution shifts, and we don’t know it! 
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Training simulations

Test data / observation

Generative models 

likelihood p(x|y)

Test 1: Goodness-of-fit test / Out-of-distribution detection 
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Training simulations

Test data / observation

Generative models 

likelihood p(x|y)

MCMC

Test 1: Goodness-of-fit test / Out-of-distribution detection 
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Training simulations

Test data / observation

Generative models 

likelihood p(x|y)

MCMC

The test data / observation doesn’t look 
like training data, so we shouldn’t trust 

our analysis!

Generative NF models enable 
goodness-of-fit test to improve the 

robustness of analysis.

Test 1: Goodness-of-fit test / Out-of-distribution detection 



Multiscale consistency test with Multiscale Flow
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▷ Motivation: Multiscale analysis for robust constraints

○ Different scales are governed by different physics / systematics: the numerical / astrophysical 
effects normally happens on small scales, and PSF may influence very large scales

○ Separate and compare the information (likelihood) of different scales, and identify the part of 
the data that is contaminated by systematics

▷ Wavelet decomposition: recursively apply low-pass filters (scaling functions) and high-pass filters 
(wavelet functions) to the data. In each iteration, the data xn with resolution 2n is decomposed into a 
low-resolution approximation xn-1, and detail coefficients of the remaining signal xn-1,extra

Dai, B. and Seljak, U., 2023. Multiscale Flow for Robust and Optimal Cosmological Analysis. arXiv preprint arXiv:2306.04689.



Multiscale flow

28

▷ Consider a cosmological field with 2562 resolution:
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Multiscale flow
▷ Consider a cosmological field with 2562 resolution:
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Multiscale flow
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▷ Consider a cosmological field with 2562 resolution:
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Multiscale flow
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▷ Consider a cosmological field with 2562 resolution:
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Sample generation & super-resolution
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Sample generation & super-resolution
● power spectrum ● kappa probability distribution
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noise 
miscalibration

● Consistent posteriors from different scales ● Inconsistent small scale posterior

Distribution shift detection — noise miscalibration
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Input WL map

Generative models 

MCMC

“Where is the extra information coming from?”
“You need to show why the other cosmological models are ruled out”

σ
8

 = 0.76 ± 0.02

Interpretability
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Input WL map

Generative models 

σ
8

 = 0.76 ± 0.02

MCMC

Generated sample 

σ
8

 = 0.816

The same realization (latent 
code) as the input map, but 

assuming a different 
cosmology

Difference

Generated sample - input 
map  

“Where is the extra information coming from?”
“You need to show why the other cosmological models are ruled out”
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Input WL map

Generative models 

σ
8

 = 0.76 ± 0.02

MCMC

Generated sample 

σ
8

 = 0.816

The same realization (latent 
code) as the input map, but 

assuming a different 
cosmology

Difference

Generated sample - input 
map  

“Where is the extra information coming from?”
“You need to show why the other cosmological models are ruled out”

Generative models can visualize where 
the information is coming from, and 

how the constraints are made.
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Input WL map

Generative models 

σ
8

 = 0.76 ± 0.02

MCMC

Generated sample 

σ
8

 = 0.816

The same realization (latent 
code) as the input map, but 

assuming a different 
cosmology

Difference

Generated sample - input 
map  

“Where is the extra information coming from?”
“You need to show why the other cosmological models are ruled out”

My model tells me that the 
halos from high σ8  

cosmology are too massive!



Numerous weak lensing surveys are underway
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Dark Energy Survey (DES)
Hyper Suprime-Cam (HSC) Subaru Strategic Survey

Euclid telescope

Rubin Observatory LSST Roman space telescope
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Performance on mock weak lensing maps
● Current surveys (n

g
=10 arcmin-2) ● Upcoming surveys (n

g
=30 arcmin-2) ● Optimistic scenario for a 

future-generation space-based 
survey (n

g
=100 arcmin-2)Discriminative 

model (learns 
posterior)

Generative 
model (learns 

likelihood)

Cheng et al. 
2021

Allys et al. 
2021

Ribli et al. 
2019

Dai & Seljak 
2024Sharma, Dai 

& Seljak, in 
prep.

This gap is probably 
because of 

insufficient training 
data for CNN+NF

For current and upcoming surveys, generative and discriminative models lead 
to similar performance, potentially suggesting both may have extracted the 

full information content from the data
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HSC weak lensing analysis with Multiscale Flow

preliminary
▷ Tests on mock data: significant improvement compared 

to traditional power spectrum analysis, after considering 
various systematic uncertainties

▷ From left to right:
○ the mean present-day matter density
○ a measure of the homogeneity of the Universe
○ 2 effective baryonic parameter
○ 2 intrinsic alignment parameter
○ 2 parameter of redshift estimation uncertainty

Cosmological 
constraints



Encoder Decoder

data reconstruction

Auto-Encoder

zʼ

z Gaussianized Distribution

train Normalizing Flow

Probabilistic Auto-Encoder (PAE)
Boehm and Seljak 2020 (arxiv: 2006.05479)



PAE for SN1A spectroscopy 

Stein, 
Seljak 
etal 2022

Better than 
SALT2 in 
residuals, 4-5% 
distance error

PAE gives a generative model for SN1A
Inpainting of incomplete data
Posterior analysis for distance modulus
Anomaly detection



PAE density and latent space position for 
anomaly detection in SN1A spectra



Lessons learned
1) In cosmology we seek hidden information in non-Gaussian correlations of the 

data: hidden gems are in correlations 
2) Discriminative learning versus generative learning: generative harder to 

train, but gives sample generation (simulations), likelihoods and outlier 
detection

3) For generative models (e.g. MultiScale Flow)  one can use likelihood and scale 
dependent signal to identify anomalies

4) We are starting to see first applications of ML to cosmology data in weak 
lensing (CNN, scattering transforms, MSF), with significant gains relative to 
baseline summary statistic (power spectrum)


