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The whole thing in 5 bullets

« Widescale use of unsupervised machine-learning techniques when performing anomaly detection in
astronomical spectra.

« All these techniques struggle with high dimensional data hence we usually choose to work in lower
dimension.

« Dimensionality reduction creates a manifold which will be model dependent and hence the
anomalies detected using it will also be model dependent.

« We introduce the idea of thinking of anomaly detection models as working either on manifold and
off manifold and note they can represent very different things.

» For a given manifold, combining complementary on-manifold and off-manifold techniques
should increase the range of anomalies we detect
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« Unsupervised ML anomaly-detection approaches are used extensively, however, they can struggle

with high dimensional data.

* A comprehensive benchmarking of anomaly detection methods available on PyOD and scikit-learn
models was carried out by Han et al.(2022)@)

14 different unsupervised algorithms were tested against 57 benchmark datasets

None was statistically the best and
performance against a particular
dataset was highly model dependent —
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Introduction

The volume of spectra available to modern astronomers means it's a challenge to find anomalies

Unsupervised ML anomaly-detection approaches are used extensively, however, they can struggle
with high dimensional data.

A comprehensive benchmarking of anomaly detection methods available on PyOD and scikit-learn
models was carried out by Han et al.(2022)@)

14 different unsupervised algorithms were tested against 57 benchmark datasets

Credit: Han et al, 2022
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Why is High-D a problem?

« Raw data representation is often high-D because of how the data is collected rather than reflecting
underlying physics
e.g. raw DESI spectra ~7800 bins
e.g. image of galaxy captured in 10,000s of pixels

« This unnatural high-D representation lends us no physical intuition, is hard or impossible to work
with computationally, and means we are afflicted by the curse of dimensionality(®

* In high-D data becomes sparse as distances between points increases and points are found more
towards the boundary of the space

« Conversely the distribution of these distances becomes tighter spread

» Concept of nearest neighbours — fundamental to many anomaly detection techniques — falls apart

 Dimensionality reduction should be beneficial but:
 How do we do it and is it meaningful?
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Dimensionality Reduction and the Manifold

Dimensionality reduction relies on the Manifold Hypothesis, i.e. that most real-world high-D
datasets reside close to a lower-D manifold.

- An m-dimensional manifold is part of n-dimensional space (m<n) that locally resembles an
m-dimensional hyperplane

. This seems be valid for spectra, e.g. Yip et al. (2004)® and Portillo et al. (2020)®

- We can find low-D manifold using:

- linear projection e.g. PCA or
- non-linear manifold learning: e.g. t-SNE, Local Linear Embedding, AE, VAE

But the manifold we find will be different depending on the model we use

Linear methods will find a hyperplane; non-linear methods can find more complex shaped
manifolds
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How does the Manifold affect Anomaly Detection?
« Two main ways of identifying outliers :

» 1) Look for points which are isolated or extreme in the distribution because of distance from
neighbouring points, or because of the relative under-density of surrounding points

* in high-D this is problematic so we usually transform to low-D and look for extreme and
isolated points on the low-D manifold instead: ON-MANIFOLD ANOMALIES

 2) Construct a low-D manifold which well represents the bulk of the dataset. Points far from this
manifold (high reconstruction error) are assumed to be outliers: OFF-MANIFOLD ANOMALIES

« The manifold is model dependent — therefore the anomalies detected will also be model dependent

 Furthermore on-manifold and off-manifold anomalies are likely to be quite different

* |f we’ve constructed the manifold well then

« on-manifold outliers = extremes in current thinking Instrumentation
artefacts

« off-manifold outliers = new or rare physics
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« Data is from the DESI Bright Galaxy Sample — Iron Datataset DR1 — “good spectra”

« Normalised, downsampled ~x5 and deredshifted. Minimal other preprocessing so far.
« ~55,000 spectra split ~26,000 Stars and ~19,000 Galaxies based on DESI target type
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« Data is from the DESI Bright Galaxy Sample — Iron Datataset DR1 — “good spectra”

* Normalised, downsampled ~x5 and deredshifted. Minimal other preprocessing so far.
» ~55,000 spectra split ~26,000 Stars and ~19,000 Galaxies based on DESI target type

» Used a variety of DR techniques to build a 6-D manifold from the original 7800 D data — PCA, a
linear AE, and AE

« Then visualized the 6D — 2D using a manifold-learning technique tSNE. STARS
PCA Linear AE = PCA AE GALAXIES
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* (Note the unsupervised classification — separation between stars and galaxies)
« We can see how the (2D visualisations of the) low-D manifolds are model-dependent
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» Take the PCA-generated manifold and look both off- and on-manifold for outlying points
« ldentify 1% of total population as outliers under both methods

PCA
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~7800D — 6D example: DESI Spectra from BGS — PCA manifold

» Take the PCA-generated manifold and look both off- and on-manifold for outlying points
« ldentify 1% of total population as outliers under both methods

PCA Combined
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Similarity score:2.3%

OFF-manifold ON-manifold

« By combining an on- and off-manifold method we should be able to detect more
anomalies



~7800D — 6D example: DESI Spectra from BGS — AE manifold

» Take the AE-generated manifold and look off- and on-manifold for outlying points
« ldentify 1% of total population as outliers under both methods

AE LOF Combined
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=50 1
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Similarity score: 2.2%
OFF-manifold ON-manifold

« By combining an on- and off-manifold method we should be able to detect more
anomalies



Takeaways

Unsupervised anomaly detection is model dependent

It is helpful to split techniques/anomalies between on- and off-manifold. In general these
will not produce the same result.

For a given manifold, combining complementary on- and off-manifold techniques should
widen the number of anomalies we detect in high-D data. Many of you are intuitively
combining AD techniques already but we hope viewing the problem from the perspective of the
manifold will inform these choices.

This is very much a work in progress and we will also be looking to apply these ideas to bigger
DESI datasets, more AD techniques, test the impact of different levels of preprocessing and also
to test standard benchmark datasets in other domains

Please get in contact ucaprpn@ucl.ac.uk if you want to discuss further any of the topics raised
here.
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DESI: Identifying Anomalous Spectra with Variational Autoencoders

Constantina Nicolaou,'* R.P. Nalha.n,l Ofer La.ha'«r,1 Antonella Palmese,? The DESI Collaboration
! University College London, Gower 5t, London WCIE 6BT, UK
I Carnegie Mellon Universiry, 5000 Forbes Ave, Pinsburgh, PA 15213, United States

Accepted XXX Received YYY, in original form ZZZ

The tens of millions of spectra being captured by the Dark Energy ﬁ oplc Instrument (DESI) provide remendous

ABSTRACT

discovery potential. In this work we show how Machine Learning, lar a Variational Autoencoder (VAE), can detect
anomalies in a sample of approximately 200,000 DESI spect g galaxies, quasars and stars. We demonstrate that the
VAE can compress the dimensionality of a spectrum by x mll retaining enough information to accurately reconstruct
spectral features. We then detect anomalous spectra ys! those with high reconstruction error and those which are isolated
in the VAE latent representation. The anomalies i §j fall into two broad categories: spectra with artefacts and spectra with
unique physical features. Awareness of the help to improve the DESI spectroscopic pipeline; whilst the latter can

lead to the identification of new and u jects. To further curate the list of outliers, we use Astronomaly which employs
Active Learning to provide persongys 1er recnmmendmmns for visual inspection. In this work we also explore the VAE
latent space and find that diffe ct classes and sub-classes are separated despite being unlabelled. We demonstrate the

interpretability of this latent spac®by identifying tracks within it that correspond to various spectral characteristics. For example,
we find tracks that correspond to increasing star formation and increase in broad emission lines along the Balmer series. In
upcoming work we will be applving the methods presented here to search for both systematics and astrophysically interesting
objects in much larger datasets of DESI spectra.

Key words: techniques: spectroscopic — methods: statistical — methods: data analysis — galaxies: peculiar — [methods: machine

Finding Pegasus: Leveraging the Manifold from Machine-Learning
Dimensionality-Reduction to Enhance Unsupervised Anomaly Detection in
DESI Spectra

R. P. Nathan,'* O. Lahav,! and N. Nikolaou!
! Ulniversity College London, Gower St, London WCIE 68T, UK
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ABSTRACT
Large-scale surveys like DESI mean we live in a % when it comes to astronomical spectra. The sheer volume of
spectra available, however, combined with Lhej.r nsional representation means it can be a challenge to find anomalous

instances — be they instrumentation artefac jects or “unknown unknowns.” Machine-Learning techniques have been

“s and are mostly well suited to the task of looking for anomalies at scale.
have been used extensively, however, they can struggle with high-dimensional data.
some of the issues key to the high-D data problem - usuall}' thought of collectively as

used for a number of years to identify
Unsupervised anomaly-detection
The purpose of this work is tqdey

the Curse of Dimensionali ith a particular focus throughout on anomaly detection. In particular, we look at this problem
from the perspective o mfald that is created when dimensionality-reduction techniques are employed — either explicitly
or implicitly = to get ro the high-D problem. We will give illustrations = both simple and then using real DESI data - of
what difference this manifold can make in practice and how it can bring significant model dependence to the set of anomalies
detected. We discuss different unsupervised anomaly-detection technigues and introduce the terms on-manifold or off-manifold
as a helpful way of categorizing them. We illustrate that by combining on- and off-manifold techniques, we might increase the
number of anomalies detected — which will be of especial importance in recall-sensitive tasks. And we suggest that this might

"Identifying Anomalous Spectra with
Variational Autoencoders”,
Constantina Nicolaou et al. [2024]

"Finding Pegasus: Leveraging the Manifold from

Machine-Learning Dimensionality-Reduction to
Enhance Unsupervised Anomaly Detection in
DESI Spectra”, R.P. Nathan et al. [2024]
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