

Scalable analysis across large datasets

Neven Caplar - Rubin Observatory/University Of Washington

LSST Discovery Alliance

Schmidt Sciences

The LINCC Frameworks Project

LSST Interdisciplinary Network For Collaboration And Computing

 A collaboration between University of Washington, Carnegie-Mellon University, LSST Discovery Alliance, University of Pittsburgh, and NOIRLab [NSF's National Optical-Infrared Astronomy Research Laboratory] to build software systems for key LSST[Large Survey of Space and Time] science

• **Science** software infrastructure: combining user algorithms & code, astro packages, and industry tools to build scalable science analysis packages

- Incubators provide support for researchers to work directly with LINCC Frameworks team to apply their new tools to research problems.
- Goal: Establish long-term software development collaborations that serve both the selected teams and LINCC Frameworks.
- Next proposal <u>deadline is June 17, 2024</u>
 - Selection to be announced mid July
 - 2 stage proposal process
 - Duration of the project 2024 September through November (flexible)

PI: Meg Schwamb (Queen's University Belfast)

Goal of the incubator: **Make it fast and efficient!** Generate DP0.3 [Data Preview 0.3] simulated dataset in less than a day rather than the weeks it took

Original implementation:

- Too slow for widespread use (~3 weeks to run one one full scale Solar System simulation 16 million simulated objects run on ~500-1000 cores)
- Multi-step read in and out of files
- Ephemeris generator (orbit to sky positions) generating terabytes of temporary files
- Clunky two step process with two software packages

PI: Meg Schwamb (Queen's University Belfast)

Goal of the incubator: **Make it fast and efficient!** Generate DP0.3 [Data Preview 0.3] simulated dataset in less than a day rather than the weeks it took

Results of the incubator:

- Continuous integration, automatic documentation generation, and PyPI distribution.
- Expanded the code to support pluggable light curve and cometary activity magnitude modifications contributed by users.
- Eliminated a file IO bottleneck and integrated new super fast ephemeris generation algorithm into the code base.
- Integrated a more efficient detection linking algorithm.
- Reduced runtime for DP0.3 with 100 cores from ~3 weeks to ~5 hours (100-fold speed up)

- Data is stored in a hierarchical data storage scheme, where the sky is split into HEALPix tiles until each tile has roughly a similar number of objects (rows).
- These tiles are stored as Parquet files within a directory tree that encodes their location on the sky.
- <u>https://github.com/astronomy-commons/lsdb</u>

Enables: fast spatial lookup, distributed analytics, distributed joining and cross-matching. Based on 10+ yrs of thinking/experience/experimentation.

Norder=0/Dir=0/Npix=0/catalog.parquet

Norder=1/Dir=0/Npix=28/catalog.parquet Norder=1/Dir=0/Npix=29/catalog.parquet Norder=1/Dir=0/Npix=30/catalog.parquet Norder=2/Dir=0/Npix=112/catalog.parquet Norder=2/Dir=0/Npix=113/catalog.parquet Norder=2/Dir=0/Npix=114/catalog.parquet Norder=2/Dir=0/Npix=115/catalog.parquet

Norder=0/Dir=0/Npix=11/catalog.parquet

- Data is stored in a hierarchical data storage scheme, where the sky is split into HEALPix tiles until each tile has roughly a similar number of objects (rows).
- These tiles are stored as Parquet files within a directory tree that encodes their location on the sky.
- <u>https://github.com/astronomy-commons/lsdb</u>

Enables: fast spatial lookup, distributed analytics, distributed joining and cross-matching. Based on 10+ yrs of thinking/experience/experimentation.

Norder=0/Dir=0/Npix=0/catalog.parquet

Norder=1/Dir=0/Npix=28/catalog.parquet Norder=1/Dir=0/Npix=29/catalog.parquet Norder=1/Dir=0/Npix=30/catalog.parquet Norder=2/Dir=0/Npix=112/catalog.parquet Norder=2/Dir=0/Npix=113/catalog.parquet Norder=2/Dir=0/Npix=114/catalog.parquet

Norder=0/Dir=0/Npix=11/catalog.parquet

- Collaborating with NASA to provide datasets in this spatial sharded format
- Currently implementing on <u>Fornax</u> NASA science platform in development to enable cloud-computing resources to community
- Tested with various datasets (DELVE, S-Plus survey, TRILEGAL simulations, Zubercal, ZTF, PanSTARRS, GAIA, Neowise) at multiple clusters
- Currently at <u>IVOA meeting</u> being proposed as standard.

Norder=0/Dir=0/Npix=0/catalog.parquet

Norder=1/Dir=0/Npix=28/catalog.parquet Norder=1/Dir=0/Npix=29/catalog.parquet Norder=1/Dir=0/Npix=30/catalog.parquet Norder=2/Dir=0/Npix=112/catalog.parquet Norder=2/Dir=0/Npix=113/catalog.parquet Norder=2/Dir=0/Npix=114/catalog.parquet Norder=2/Dir=0/Npix=115/catalog.parquet

Norder=0/Dir=0/Npix=11/catalog.parquet

- **TAPE**: Package for performing scalable analysis of time-domain astronomy data
- Built on top of **Dask**, which provides a parallelized dataframe object and enables larger-than-memory computation on single or multiple machines.

Nested pandas/dask

Nested-Pandas is motivated by time-domain use cases, where we see two levels of information, about astronomical objects and then an associated set of N measurements of those objects.

Core advantages being:

- hierarchical column access
- efficient packing of nested information into inputs to custom user functions
- avoiding costly groupby operations

Load in Parquet Data

In [8]

1	<pre>%time #Read in parquet data nf = read_parquet(data="objects.parquet", t= reat[intf courses]; "etf courses</pre>
	nf

CPU times: user 144 ms, sys: 21.4 ms, total: 166 ms Wall time: 153 ms

:[]		ra	dec	ztf_sources	ps1_sources
	0	17.447868	35.547046	mjd flux band 0 8.420511	mjd flux band 0 0.091356
	1	1.020437	4.353613	mjd flux band 0 14.143429	mjd flux band 0 12.475696
	2	3.695975	31.130105	mjd flux band 0 7.190259	mjd flux band 0 13.717712
	3	13.242558	6.099142	mjd flux band 0 1.708140	mjd flux band 0 16.759764
	4	2.744142	48.444456	mjd flux band 0 18.837824	mjd flux band 0 18.139101
	995	6.547263	40.249140	mjd flux band 0 4.055585	mjd flux band 0 5.474614
	996	18.391919	17.643616	mjd flux band 0 10.358167	mjd flux band 0 11.889307
	997	18.587638	46.568135	mjd flux band 0 3.871603	mjd flux band 0 16.421570
	998	10.871655	6.719466	mjd flux band 0 0.886458	mjd flux band 0 14.044775
	999	15.466982	13.620714	mjd flux band 0 15.703350	mjd flux band 0 3.585283

1000 rows × 4 columns

Acronyms & Glossary

Example - Finding dipping stars

ZTF-r

60000

60000

59500

Preliminary Results

59500

Time (MJD)

59000

58500

Slides by Andy Tzanidakis, to find dipping Main Sequence stars

- High-cadence photometric data (e.g., from Kepler, TESS) are typically searched for periodic transits using the computationally-demanding Box Least Squares (BLS).
- The number of searchable light curves in Rubin will 1,000 times larger than for TESS.
- Led by Tansu Daylan (Wash. U.)

Acronyms & Glossary

LINCC Frameworks Tech Talks

- Talks that showcase the work done by the broad Rubin software and archives community.
- So far: Brokers, in-kind contributors, data centers, LINCC Frameworks software engineers...
- Future: Roman software group & LSST data management
- June 13 Even more about LSDB/TAPE

2nd Thursday of the month, 10 am Pacific at <u>https://ls.st/lincc-talks</u>

• 4pm, Wednesday, KIVA room

- At the start of TDA/MMA breakout session
- If you wish to run the demo at the same time as us we have two options
 - On your local machine
 - On our cloud [Recommended]
- **Before the demo** follow the <u>Getting Started Instructions</u>:
 - github.com/lincc-frameworks/Rare Gems Demo
 - Especially if running on our cloud; we need you to fill a form and to be approved and you should do that by the end of the day today!
- Join #lsdb_tape_tutorial in conference slack channel OR #lincc-lsdb in LSSTC slack channel for questions/comments/help

- LINCC
 - We are working on enabling scientist to use big data
 - Incubators we can help you scale up your code
 - LSDB/TAPE; new way to shard data, to crossmatch and to do large-scale analytics
 - Join of for the demo tomorrow!
 - Follow Getting Started instructions at:
 - <u>https://github.com/lincc-frameworks/</u> <u>Rare Gems Demo</u>

