Deep Learning For Asteroid Detection

LOOKING FOR ASTEROIDS IN THE MOA SURVEYS' MICROLENSING DATA

Preeti Cowan, University of Auckland, NZ

Image Credit: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / Justin Cowart

Minor Planets

 Asteroids: near-Earth, main belt, trojans, centaurs, trans-Neptunian objects
 Remnants of early

solar system • Formation • Composition

 Distributed throughout the solar system

MOA: Microlensing Observations in Astrophysics

University of Canterbury's Mt John observatory, Tekapo.

- 1.8m MOA-II telescope
- 2.2² degrees field of view
- Scans of the Galactic Bulge several times each night.

Mosaic of Galactic Bulge Field 1

MOA-II

- 10 CCDs: 3cm by 6cm
- Each has 2048 by 4096 pixels.
- Entire area is 8k by 10k

MOACam3

Difference Imaging Analysis

Bond, I. A., Abe, F., Dodd, R. J., Hearnshaw, J. B., Honda, M., Jugaku, J., ... Yock, P. C. M. (2001). Real-time difference imaging analysis of MOA Galactic bulge observations during 2000. Monthly Notices of the Royal Astronomical Society, 327(3), 868–880.

Asteroids in MOA

- Composite of all observations on May 15th 2008
- 51 observations
- Cadence of 10-12 minutes
- 5 asteroid with visible magnitude between 19.5 and 20.4

Asteroids in MOA

The main-belt asteroid (78153) 2002 NX24 on 23-June-2006 as seen in the MOA-II data

Asteroids in MOA: Image Stacks

Brightest pixel stack

Median pixel stack

Subtracted stack (Brightest – Median)

Partial tracklet of the main-belt asteroid (78153) 2002 NX24 on 23-June-2006 as seen in the MOA-II data

Creating the Dataset: Tracklets

- 14 years of exposures from GB5
 chip 5: 50K observations
- Create subtracted stack
- List of all known asteroids
- Scan images to find the ones where a tracklet is visible
- 2073 tracklets found with visible magnitude 20.5 or lower

Creating the Dataset: Tracklets in Uniform Images

Convolutional Neural Network (CNN)

- Input is an image
- Everything between the input and output is the hidden layer
 - Magic of mathematics
- Purpose is to accurately predict output from the input
 - Minimize the loss

Classification Architectures: Winners

- VGG-like
- Fewer parameters
- MOA-15 with one additional "32 conv 3x3" block

Classification Architectures: Winners

Classification Architectures: Dataset

- 4072 images with tracklets
- 19,682 images without tracklets
- Data in training and validation sets is augmented
 - 8 augments per tracklet images
 - Random 35% of augments for the no tracklet images
- No overlap between the 3 sets
- Further test set: tracklets from other fields and chips
 - 300 tracklet images
 - 2000 no tracklet images

	Train	Validation	Test		
Yes	3322	415	335		
No	15,595	2039	2048		
(a)					
	Train	Validation	Test		
Yes	29,898	3735	335		

(b)

7748

2048

59,261

No

Classification Architectures: Evaluation GB5-R5 Test Set

	Recall	Precision	FN/FP
MOA-12	89.85%	86.49%	34/47
MOA-14	90.15%	83.20%	33/61
MOA-15	90.15%	90.15%	33/33
Hybrid A	90.15%	80.11%	33/75
Hybrid B	89.55%	80.00%	35/75

Classification Architectures: Evaluation GB-All Test Set

	Recall	Precision	FN/FP
MOA-12	94.00%	79.89%	18/71
MOA-14	94.33%	74.28%	17/98
MOA-15	94.00%	80.11%	18/70
Hybrid A	94.67%	72.63%	16/107
Hybrid B	94.67%	76.96%	16/85

Classification Architectures: Ensemble

	Recall	Precision	FN/FP
Ensemble-Max- GB5-R5	94.33%	63.71%	19/180
Ensemble-Avg- GB5-R5	91.34%	86.69%	29/47
Ensemble-Max- GB-All	97.67%	50.78%	7/284
Ensemble-Avg- GB-All	96.33%	86.27%	11/46

Object Detection: Impetus

To quickly spot obscured and hard-to-find tracklets

Object Detection: YOLOv4

YOLO: Dataset

- Line clipping results for initial box coordinates
- YOLO format expects
 positional data with
 respect to the image
 dimensions
- 4153 tracklet images
 - 3737 training set
 - 416 test set

YOLO: Results- mAP of 90.95%

Summary and New Beginnings

- Methodology to extract known asteroids from survey data and use these to construct labelled datasets for supervised deep learning
- Possible to train deep learning models with a small amount of real data that generalizes well to categorize unseen data
- Both networks will be used for finding tracklets in the 500K GB5-R5 images with no known asteroid tracklets
- Integrate with software like HelioLinC to determine if candidate detections are solar bound objects
- Apply techniques and networks used with MOA to other surveys
 - CLASSY: Classical and Large: A Solar SYstem Survey
 - TNO survey with CFHT

Thank you!

preeti.cowan@auckland.ac.nz