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DATA

CONTEXT

Usually obtained by spectroscopy, effective temperature (Teff), surface gravity (log 𝑔), and metallicity ([Fe/H]) are among the main parameters of 

interest in the context of stellar and galactic astrophysics. Photometry, however, is considerably less expensive and can be exploited for selecting 

interesting objects for a variety of scientific purposes. We explore machine learning to build photometry-based models to estimate these 

parameters for members of open clusters (OCs) in the footprint of the Javalambre-Photometric Local Universe Survey (J-PLUS). By taking 

advantage of J-PLUS 12-filter system, and after a comprehensive feature engineering step, our models show competitive results for all parameters. 

Moreover, our main goal is to provide [Fe/H] for these clusters, particularly aiming at enabling subsequent cluster and galactic studies on e.g. 

membership analysis, multiple stellar populations, stream formation and member evaporation.
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METHOD

NEXT STEPS
● Validate models via predictions for other datasets (e.g. APOGEE, SEGUE, GALAH)

● Estimate parameters for members of 6 clusters with available photometry and at least 10 members

● Further analyze preliminary results

● MCMC for uncertainties

Machine learning:
map correlations in data to build models capable of

predicting the targets, provided the features

● Photometric data → 153 features
○ 136 colors (combination of 17 magnitudes)
○ 17 absolute magnitudes (12 J-PLUS + 2 CatWISE + 3 Gaia)

● Spectroscopic data → 3 targets (LAMOST)
○ Teff
○ log 𝑔
○ [Fe/H]

LightGBM + shap-hypetune (see top right QR codes):
gradient boosting technique with optimization framework to 

select best features through recursive feature elimination 
(RFE) and best hyperparameters through bayesian search

Number of features selected from shap-hypetune RFE
Teff: 82       log 𝑔: 83       [Fe/H]: 100

After further RFE with cross validation (RFECV)
Teff: 62       log 𝑔: 65       [Fe/H]: 76

shap-hypetune

Fig. 9: Preliminary results:
➔ Main sequence reasonably 

recovered
➔ Scattered [Fe/H] with clear outliers
➔ Median [Fe/H] (marked in colorbar) 

around solar values

● Isochrone fitting for clusters

○ estimate parameters for clusters (e.g. distance, extinction, age, isochronal [Fe/H])

● Compare with J-PLUS only photometry

● Explore photometric cluster membership

SHapley Additive exPlanations (SHAP) importances (Lundberg & Lee, 2017): 
the sum of the individual importances of each feature for a given model is 
equal to the difference between the model prediction for a specific instance 
(star) and the average model prediction for all instances in the dataset. Although predictions 

show visible scatter, 
the [Fe/H] model is 
well behaved in the 
usual regime where 
OCs are found, 
around [Fe/H] ～ 0. 

Relative importances as a funtcion of their respective rankings 

show that ～70% of the models’ variabilities can be explained 

by using the top 10 most important features, as indicated above 

(Fig. 5) and quantitatively exhibited below (Fig. 6).

Fig. 7: Predictions for Teff, log 𝑔 and [Fe/H] using the blind test set of our sample show MAEs of 

42 K, 0.055 dex and 0.061 dex, respectively. Residuals attest essentially zero average difference 

in all cases and only weak trends for extreme values of log 𝑔 and [Fe/H], where data is scarce. 

Fig. 8 (below): MAEs for 
training models using 
selections of most 
important  features only, 
instead of all selected 
from RFECV (see Fig. 4). 
MAEs rapidly approach 
near-optimal values 
before reaching optimal 
number of features.
In this work, all features 
were used (see Fig. 7) 
since all magnitudes 
appear in top 15 most 
important features 
(which explain ～80% of 
models’ variabilities), 
such that no features 
could be dropped, and no 
benefit was noticed in 
terms of computing time 
by using less features.

Table 1: Cleaning steps to build sample used in models development. Cross 
matches were made from top to bottom. Photometric data in this work is 
composed of J-PLUS DR3 (López-Sanjuan et al., 2024), Gaia DR3 (Gaia 
Collaboration, 2022) and CatWISE (Marocco et al., 2021). Spectroscopic data 
was taken from LAMOST (Cui et al., 2012; DR8). Final sample underwent 
through additional cuts for quality selection, resulting in 88 421 stars, split into 
train (70%), validation (20%) and test (10%) subsamples.

-

Fig. 1: Transmission curves of the filters of the three catalogs used in this work, plotted 
against three examples of spectral energy distributions of log 𝑔 = 4.5, [Fe/H] = 0, [𝛼/Fe] = 
0. J-PLUS and Gaia cover the optical portion of the electromagnetic spectrum, while 
CatWISE gathers infrared information. Note that J-PLUS relies on seven 
narrow-/intermediate-band filters strategically located.

Fig. 3: Cross match for J-PLUS DR3 stars (gray regions) and the OCs sample of Hunt & Reffert (HR23, 2023; 
distance-colored points), along with the ones found in the J-PLUS DR3 footprint (distance-colored points with black 
outlines). Clusters with at least 10 probable members are shown as diamonds, while those with at least 20 members are 
diamonds with black outlines. The color bar indicates distance (in parsecs) of the OCs.
This sample was constructed in parallel and unrelated to building the sample above for models development.

Fig. 2: Distributions of 
atmospheric parameters  
as taken from LAMOST 
for the final sample to be 
used in models 
development.

Fig. 4: RFECV mean absolute errors (MAE) values as a function 
of the number of optimal features selected by shap-hypetune 
optimization. The black dashed lines in each panel mark the best 
mean RFECV MAE and the respective number of features. 

Starting with all 153 features, shap-hypetune first selected 
best hyperparameters along with an optimal subset of 
features, which was further refined by a cross validation step.


