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Stellar label
dependent model

A (generative) stellar label dependent model
simulates stellar spectra from ‘stellar labels’

Examples: The Cannon (Ness+15), The Payne

(Ting+18), Cycle-Starnet (O’Briain+20), Gaia XP

model (Zhang,Green,Rix23), Transformer model
(Leung,Bovy23) and many more!

Stellar label
Independent model

A (generative) stellar label independent model
simulates stellar spectra WITHOUT labels

Examples: Not many!
Our model (Laroche,Speagle24),
also Transformer model (Leung,Bovy23)



Stellar label dependent models suffer from stellar label
systematics which decrease model performance:

THE STELLAR LABELS GAP



Stellar label dependent models require ‘good’ stellar labels
to train on, but what if...



Stellar label dependent models require ‘good’ stellar labels
to train on, but what if...

Your training labels are poorly estimated
(inaccurate synthetic models)

Certain stellar sub-populations in your data are not well
summarized by labels (e.g. chemically peculiar stars)

You do not have enough stellar labels in certain regions
of the stellar parameter space your data spans

You have a significant number of stellar multiples in
your data (binaries, triples, etc.)
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Low-resolution BP/RP (XP) spectra in Gaia DR3

Largest spectroscopic survey ever
(220+ million spectra) ol
Extremely low resolution

e (R~100 from ~300 to 1000 nm)

Almost certain that rare,
e undiscovered stellar populations are

hiding in the Gaia XP spectra
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Credit: ESA/Gaia/DPAC



To close the stellar labels gap, we developed a fully
data-driven model which simulates Gaia BP/RP
spectra without relying on stellar labels



A novel variational autoencoder: scatter VAE
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A novel variational autoencoder: scatter VAE

Data
Data expansion

compression i Output
Input e spectra
spectra H i




A novel variational autoencoder: \V/A\ =

Data
Data expansion

compression Output
Input I a spectra

spectra >E ;i




Output
spectra

Input

spectra W

Training procedure:
‘Get out what you put in’
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Input = Output



The end result: our model can simulate Gaia XP spectra
from the , no stellar labels required!
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How does our stellar label independent
model performance compare to stellar
label dependent models?



Reconstruction error comparison to the deep stellar label
model of Zhang, Green & Rix (2023)
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Reconstruction error comparison to the deep stellar label
model of Zhang, Green & Rix (2023)
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Better stellar label
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What astrophysical information has our
stellar label independent model learned?



Compare Kiel vs. Latent space

Kiel
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Project into latent space

Kiel
space
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Split the and

Kiel

space
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The latent space has learned to classify
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/|GB stellar ‘evolutionary’ tracks

Kiel

space




The latent space understands ‘evolution’ along the !/ 5/
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What about metallicity?

. [M/H] [dex] .
Main sequence mmmss-srwams  (Glant branch




Vary [M/H] along the MS and GB
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The latent space has also learned a metallicity ‘gradient’

‘ [M/H] [dex]
Malﬂ Sequence -2.17-1.83-1.5-1.17-0.83-0.5-0.170.17 0.5




In brief, main result of Laroche & Speagle (2024).
Stellar label independent evidence for a-information in Gaia XP spectra

Patil et al. 2023
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In brief, main result of Laroche & Speagle (2024).
Stellar label independent evidence for a-information in Gaia XP spectra
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Stellar label iIndependent modeling:
A promising tool for discovering
rare stellar populations in large-scale
Spectroscopic surveys



Carbon-enhanced metal poor stars

e Metal poor stars serve as ‘fossil
records’ of the early Universe ~80% CEMP to
metal-poor ratio

e Metal-poor star surveys have
found a counter-intuitive chemical

peculiarity:
~10-30%
o Metal poor stars with carbon
enhancement [C/Fe] > +0.7
o Referred to as CEMPs
(carbon-enhanced metal poor) [Fe/H] < -4 [Fe/H] < -2

e The relative CEMP fraction is
inversely correlated with [Fe/H]

Lucatello+06, Lee+13, Placco+14, Yoon+18



Adapted from Goswami+21

CEMP formation (2 of many)

Nature Nurture

(Metal-poor)

C-rich Fe-poor
environment

<~ Produces s-process '
elements in the AGB
phase
Mass/age dependent

CEMP-no star CEMP-s star
Single star evolution Binary evolution




Gaia XP CEMP candidates across the Milky Way (Lucey+23)

Input X
(Gaia BP/RP
Spectra)

» -

Tree 2 Treen
Residual » 4 Residual Residual » 4

XGBoost trained on confirmed CEMPs

Largest all-sky CEMP candidate
catalog to date
(58,872 candidates)




What lurks within the Lucey CEMP candidate sample?

CEMP candidates




What lurks within the Lucey CEMP candidate sample?

CEMP candidates

Train an ‘expert’ model
to learn a
latent representation



What lurks within the Lucey CEMP candidate sample?
Project CEMP

candidates into
latent space

CEMP candidates l

Train an ‘expert’ model
to learn a S |

latent representation L N
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Lucey CEMP catalog latent space representation
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Lucey CEMP catalog latent density distribution

- Can we separate sub-populations in | Number of CEMP candidates
the latent space? ” 0 100 200 300 400
Z\C;] 0 » 4 1
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Discovering hidden sub-populations in the Lucey CEMP catalog

e Apply HDBSCAN (a popular clustering 1.0t
algorithm) to Lucey CEMP catalog
latent vectors
0.5
n"#‘
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N
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—1.0 =05 0.0 0.5 1.0 1.5

<3
2D marginal distribution visualized, but clustering is based on the entire latent space



Discovering hidden sub-populations in the Lucey CEMP catalog

Apply HDBSCAN (a popular clustering 1.0}
algorithm) to Lucey CEMP catalog
latent vectors

Discover several (7) populations

< 0.0
Are these populations truly distinct?
e Spectroscopically? sl
e Photometrically?
e Spatially?
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2D marginal distribution visualized, but clustering is based on the entire latent space



Normalized flux

Normalized flux

x10~2

CEMP sub-populations are spectroscopically distinct
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Normalized flux

Normalized flux

CEMP sub-populations are spectroscopically distinct

x10~2!
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CEMP sub-populations are less
distinct photometrically

|
NG
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e Most populations are overlapping in
the Gaia HRD

e Highlights the strength of the Gaia XP
spectra
o Numerous
o Rich in stellar information

Absolute magnitude

m Despite low resolution 4; CEMP
| subpopulation
_ _ KDEs
e A Gaia photometry search could miss !
sub-populations which are not well 6F
separated photometrically '
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CEMP sub-populations are spatially distinct
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CEMP sub-populations are spatially distinct
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Stellar label independent model
has never ‘seen’ distance,
position or brightness
only (flux normalized) spectra
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Additional evidence that
these sub-populations are
truly distinct...different
CEMP formation channels?




Prelimi Naly characterizations with ‘majority vote’ (SIMBAD cross-match)

Giants

297

B\ R,
RN
==

Eclipsing binaries

Main sequence

N R T
It
LRI LA

Long period variables

IgiiJ \\§;\

| Next: false positive identification, CEMP binarity estimates, formation channels...




(arXiv:2404.07316)  Towards the discovery of rare stellar populations in the
Gaia XP spectra with stellar label independent modeling

e Qur stellar label independent model can discover hidden populations in
large-scale surveys
o Such as carbon-enhanced metal poor stars
o Future work:
m CEMP binary fraction estimates
m Constrain formation channels

e Do you have Gaia XP spectra you are trying to characterize?
e Or, do you have a completely different spectroscopic survey to analyze?

If so, let’s talk!



Backup Slides



Absolute magnitude

CEMP probability distributions across sub-populations
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Stellar label independent and dependent models referenced in this work.
Our model is stellar label independent, whereas ZGR23 is a stellar dependent model.
can do both (but their embedding space does not perform data compression)

STELLAR LABEL INDEPENDENT MODELS STELLAR LABEL DEPENDENT MODELS
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LAROCHE & SPEAGLE (2024) - This work h ZHANG, GREEN & RIX (2023) - ZGR23

Scatter variational auto-encoder (sVAE) Deep stellar label model

ﬁ ﬁ (ZGR23 stellar labels optimized [@1GIET ﬁ XP
through inference procedure) labels spectra

(

LEUNG & BOVY (2023) - LB23 )

Stellar label independent implementation of transformer-based model Stellar label dependent implementation of transformer-based model
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= [, B23 - stellar label dependent

== = [, B23 - stellar label independent

Comparison to
, With
two implementations
of their model: stellar
label independent and
dependent
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Model reconstruction errors in comparison to and ZGR23 as a function of
stellar labels. Our stellar label independent model does not suffer from reduced
stellar label coverage issues for both cool and low surface gravity stars
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Model reconstruction errors at specific wavelengths across the Gaia XP
wavelength range. Our stellar label dependent model is less biased than
ZGR23 from roughly 450 to 850 nm
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i Main

Full sequence
latent space

distribution
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Astrophysical information is not encoded into a single
latent dimension. Rather, the information is shared
across the entire latent space.




We train our latent space to classify the a-bimodality. In comparison to
several stellar label based classifiers (not including [a/M]), our latent
space achieves better classification.

Better a-bimodality classification =

Perfect classification {}\[J,.-""II] classifier Label classifier

[False

high-a

0.11 0.17

False | True
low-av low-cx

This simultaneously demonstrates that (i) our stellar label independent
model has learned genuine a-information and (ii) the Gaia XP spectra
contain a-information (without relying on stellar label correlations)



The stellar label error distributions for the catalogs we use in this work.
Full = no cuts, good labels = some cuts, pristine labels = harsh cuts
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Model reconstruction errors over the first 5 BP/RP coefficients.
Our stellar label dependent model is more (less) accurate than the stellar label
dependent (independent) model of , the latter due to data compression
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Catalogs used in this work, in Kiel space.
Full = no cuts, good labels = some cuts, pristine labels = harsh
cuts

Number of XP spectra Number of XP spectra Number of XP spectra
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