

"Scary Barbie": An Extremely Energetic, Long-duration Tidal Disruption Event Candidate without a Detected Host Galaxy at z = 0.995

May 20, 2024

Bhagya M. Subrayan (she/her/hers) Department of Physics and Astronomy, Purdue University Advisor: Prof. Danny Milisavljevic Email: bsubraya@purdue.edu

Rare Gems in Big Data Conference Tucson, Arizona

College of Science

Recommender Engine For Intelligent Transient Tracking (REFITT)

Sravan et al. 2020

1) Ingests alerts from All-Sky Surveys processed through ANTARES data-broker.

Energy/Flux

Time

2) Predicts, prioritize and prepare recommendations for follow-up.

 \odot

TIL

P

PURDUE UNIVERSITY

College of Science

3) Recommendations distributed to observing Agents (OA)

> 4) OA's act on the recommendations and sends data back to REFITT

JE

UNIVERSITY

College of Science

Access the Gosmos

PARKDALE

Real Time Characterization of Evolving Core-collapse Supernovae from Zwicky Transient Facility Light Curves

Time

2) Predicts, prioritize and prepare recommendations for follow-up.

Motivating prioritization and follow-up with underlying physics of transients ?

Can we make predictive forecasts on transient evolution by fitting hydrodynamical models to time-series data in real time?

Real-Time Characterization and Parameter Evolution

Prioritization of events with desired parameter spaces (gems) and Follow-up at Information Rich Epochs with Real-Time Transient Characterization

Data Driven Anomaly Detection

5

-Flagged for

Theoretically Driven Anomaly Detection

Long duration events, Re-brightening events, Models that do not fit well! follow-up

AT 2021Iwx aka "Scary Barbie": Ultra luminous, Extremely Energetic, Long-Duration Optical Transient at z = 0.9945

Optical Spectroscopy Narrow hydrogen cores with broad wings, prominent semi-forbidden lines Missing [OIII] 4959, 5007

Subrayan et al. 2023b, Wiseman et al. 2023

Extreme parameters for mass of the star and black
 hole from TDE modelling:

$$\begin{split} \mathbf{M}_{\text{star}} &= \mathbf{14.28}^{+0.67}_{-1.65} \ \mathbf{M}_{\odot} \\ \mathbf{M}_{\text{BH}} &= \mathbf{1.7} \pm \mathbf{0.1} \times \mathbf{10^8} \ \mathbf{M}_{\odot} \end{split}$$

 Swift-XRT observations of AT 2021lwx in 2023, yielded X-ray emission with 3σ significance, indicating a luminosity of 10⁴⁵ erg s⁻¹ in the 0.3–10 keV.

 No detection in radio. VLASS non-detection F_v < 0.35 mJy at ≈ 3 GHz. No jets detected yet!

But NO host galaxy detected yet?

Finding Rare Gems in Big Data

Time

10

Approaches involving filters with host less transients + Real-Time Characterization using theoretical models + Anomaly Detection

Summary

- AT 2021lwx aka "Scary Barbie" is an ultra luminous $L_{peak} = 10^{45.7}$ erg s⁻¹, extremely energetic (> 10^{53} ergs), long duration evolving optical transient (> 1000 observer-frame days) at z ~ 1.
- TDE modelling of these extreme luminosities indicate extreme parameters for the disruption:
 - $$\begin{split} \mathbf{M}_{star} &= \mathbf{14.28}^{+0.67}_{-1.65} \ \mathbf{M}_{\odot} \\ \mathbf{M}_{BH} &= \mathbf{1.7} \pm \mathbf{0.1} \times \mathbf{10^8} \ \mathbf{M}_{\odot} \end{split}$$

- Ground-based optical images of the field do not detect an underlying galaxy hosting the theorized supermassive blackhole.
- Finding the host galaxy with future observations will be fundamental to test the physical interpretations.
- Real Time Characterization of Transients using underlying physics will be an invaluable tool in finding RARE GEMS IN BIG DATA from LSST.

Extra / Back-up Slides

Parameter Spaces : Progenitor Properties and Explosion Physics

- 34 events with confident fits, remaining 11 events are flagged.
- Flagging due to:
- a) poorly constraining rise time data along with no upper limits
- b) parameter inferences approaching model boundaries
- Non-negligible fraction (8 out of 45) showing high mass-loss rates $\dot{M} \leq 10^{-2} M_{\odot} yr^{-1}$

How do different parameters change as data come in?

Relative change in parameter values with respect to complete data:

 $\Delta \boldsymbol{\eta} = \boldsymbol{\eta}_t - \boldsymbol{\eta}_{ ext{complete data}}$

 The explosion energy, host extinction and mass-loss rate are slightly overestimated during initial phases of evolution, while the ⁵⁶Ni mass is heavily underestimated.

 The ZAMS mass, explosion date and *β* estimates do not change significantly at different phases.

Subrayan et. al 2023a

The Future of Theoretically Driven Inference

Garretson et al 2024 (in prep)

Rapid Inference with Machine Learning

Parsnip (Boone 2021)

Garretson et al 2024 (in prep)

Comparison with other optical transients Missing [OIII] 4959, 5007

A possible extreme tidal disruption candidate?

 Extreme parameters for mass of the star and black hole from TDE modelling:

$$\begin{split} \mathbf{M}_{\text{star}} &= \mathbf{14.28}^{+0.67}_{-1.65} \ \mathbf{M}_{\odot} \\ \mathbf{M}_{\text{BH}} &= \mathbf{1.7} \pm \mathbf{0.1} \times \mathbf{10^8} \ \mathbf{M}_{\odot} \end{split}$$

- Swift-XRT observations of AT 2021lwx in 2023, yielded X-ray emission with 3σ significance, indicating a luminosity of **10**⁴⁵ erg s⁻¹ in the 0.3–10 keV.
- No detection in radio. VLASS nondetection F_v < 0.35 mJy at ≈ 3 GHz. No jets detected yet!

Subrayan et al. 2023b, Wiseman et al. 2023

But NO host galaxy detected yet?

Subrayan et al. 2023b

The story is incomplete yet! Confirming a host for AT 2021lwx is a fundamental test to the current physical interpretations. More observations will yield exciting science! Stay tuned!

Data Driven Anomaly Detection

While extremely useful for discovering rare transients, data driven modeling doesn't tell us if we understand the underlying physics

