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What is Machine Learning, Anyway?

l

THIS 1S YOUR MACHINE (EARNING SYSTEM?
|

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

|
WHAT IF THE ANSWERS ARE WRONG? )

\

JUST STiIR THE PILE DNTIL
THEY START LOOKING RIGHT.

Randall Munroe, xkcd #1838



What is Machine Learning, Anyway?

“| saw the best minds of my generation
solve deep, longstanding problems in Al
In order to serve better ads”

~Jeff Hammerbacher, Facebook



What is Machine Learning in the astronomy context?

Machine Learning is™ statistics, but where
every parameter Is a nuisance parameter

*(in the astronomy context)



Sometimes you want , , sometimes you want &
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What is ML in Astronomy?
Supervised vs. Unsupervised
Supervised Learning in Astronomy

Supervised Learning:
Unsupervised Learning in Astronomy
Unsupervised Learning:



What is ML in Astronomy?
Supervised vs. Unsupervised
Supervised Learning in Astronomy

Supervised Learning: Galaxy Images
Unsupervised Learning in Astronomy
Unsupervised Learning: Search By Image



Machine Learning has two main branches

Supervised Learning:
Regression (= fitting)
Classification

Unsupervised Learning:
Dimensionality reduction
Clustering
Outlier Detection



Supervised Learning:
Regression (= fitting) &

Classification or
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Unsupervised Learning:
Dimensionality reduction

Outlier Detection

Ivezic, Connolly, VanderPlas & Gray 2020, astrom/
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Machine Learning has two main branches
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Machine Learning has two main branches
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Galactic
center

Supervised Learning:
Regression (= fitting) |
Classification 7,

0.4 . 0.6 - . . 0.9
’ . ° o 0'4 y -
0.4 - s Rl
0.2 - o
0.2 - 0.2 - o n
s 8
0.04 * 0.0 - 0o m
_ 0 - 0.5 >
E .N . njd
) —0.2 - - . =
A 0.4
-0.2 4 il (qv]
Yooty -0.4 - -0.2 7. 0
0.3 o)
" -
:.. _0.6 - 02 m
044 - —-0.4 -
—0.8 - 0.1
0.75 100 1.25 1.50 1.75 -04 -0.2 0.0 0.2 0.4 -0.5 0.0 0.5

JEGR, HST 15656

u-g g-r r-I



Machine Learning has two main branches

Supervised Learning: i
Regression (= fitting)
Classification x

Unsupervised Learning:
Dimensionality reduction
Clustering

Outlier Detection
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Machine Learning has two main branches

Supervised Learning: L
Regression (= fitting)
Classification

VAE 2

VAE 3

Unsupervised Learning:
Dimensionality reduction
Clustering

Outlier Detection

VAE 4

VAE 5

VAE 6

0o 3 6-30 36 30 3 6-3 0 3 63 0 3 -3 0 3
VAE 1 VAE 2 VAE 3 VAE 4 VAE 5 VAE 6

Portillo+ 2020




Machine Learning has two main branches

Supervised Learning:
Regression (= fitting)
Classification
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A Brief Comment on Modality in
Astronomy:

The cosmos is weakly modal
compared with human experience




Machine Learning has two main branches

Supervised Learning:
Regression (= fitting)
Classification

Unsupervised Learning:
Dimensionality reduction

Clustering




Machine Learningfeas-two-mambranches—
has been eaten bv sebfwsu,perv&sed Learmiv\g!

I propose an investigation into the role of dark matter mini-halos in the formation and evolution of globular clusters
(GCs) 1n the Milky Way. This study would combine the high-precision astrometric data from Gaia EDR3 and DR3
(Gaia Collaboration et al. 2016, 2020) with spectroscopic data from large ground-based surveys like APOGEE,
GALAH, SDSS SEGUE, and LAMOST to characterize the dynamics of stars in the peripheral regions of GCs.
The aim would be to determine whether these GCs are embedded 1in dark matter mini-halos, which could provide
critical insights into their origins (Peebles 1984 ; Penarrubia et al. 2017). The proposed research would build upon
the probabilistic approach developed by Kuzma et al. (2021) for studying the peripheral regions of GCs, which
utilizes a mixture model 1n spatial and proper motion space to model cluster, extra-tidal, and contaminant stellar
populations. By extending this approach to include the effects of dark matter mini-halos on the kinematics of stars
in GC outskirts, we can test the hypothesis that dark matter plays a significant role in the formation and evolution of
GCs. Furthermore, this study would provide a better understanding of the distribution and properties of dark matter
in the Milky Way, contributing to the broader field of near-field cosmology. Integrating this information with the
existing knowledge of the hierarchical assembly of the Milky Way (Viswanathan et al. 2023) and the role of rapid
gas accretion in the inner Galactic disc (Snaith et al. 2021) would help paint a more comprehensive picture of our
Galaxy’s formation history and its underlying dark matter distribution.

Ciuca et al. 2023
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Real-Bogus: fake vs. real transients with ML

Brink + 2013



Real-Bogus:

RB1

NSNS SNS S

A NI

NS
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mag
mag_err
a_image
b_image
fwhm

flag

mag_ref

mag_ref_err
a_ref

b_ref
n2sig3
n3sig3
n2sigb
n3sigb
flux_ratio

ellipticity
ellipticity_ref

nn_dist_renorm
magdiff

maglim
sigflux

seeing_ratio
mag_from_limit
normalized_fwhm
normalized_fwhm_ref

good_cand_density

min_distance_to_edge_in_new

USNO-B1.0 derived magnitude of the candidate on the difference image
Estimated uncertainty on mag

Semimajor axis of the candidate

Semiminor axis of the candidate

Full width at half-maximum (FWHM) of the candidate

Numerical representation of the SEXTRACTOR extraction flags

Magnitude of the nearest object in the reference image if less than

5 arcsec from the candidate

Estimated uncertainty on mag_ref

Semimajor axis of the reference source

Semiminor axis of the reference source

Number of at least negative 20 pixels in a 5x35 box centred on the candidate
Number of at least negative 30 pixels in a 5x35 box centred on the candidate
Number of at least negative 20 pixels in a 7x7 box centred on the candidate

Number of at least: RB?2 / cedid

Ratio of the apertur sym

of the reference sot V4 seeingnew

Ellipticity of the ca v extracted

Ellipticity of the ref v obsaved

Distance in arcseco pos

When a reference s v gauss

magnitude and the ; corr

Else, the difference scale

and the limiting ma 4 amp

True if there isno r 4 11

Significance of the smoothl
smooth2

estimated uncertain
Ratio of the FWHM pcal

of the seeing on the pca2
Limiting magnitud¢ Tegt empty
Ratio of the FWHM random

Ratio of the FWHM ot the reterence source to the seeing in the
reference image

Ratio of the number of candidates in that subtraction to the total
usable area on that array

Distance in pixels to the nearest edge of the array on the new image

Based on hand-built 30+ dimensional feature vectors

Numerical ID of the specific camera detector (1-12)

Measure of symmetry, based on dividing the object into quadrants
FWHM of the seeing on the new image

Number of candidates on that exposure found by SEXTRACTOR

Number of candidates on that exposure saved to the data base (a subset of extracted)
True for a positive (i.e. brighter) residual, False for a negative (fading) one
Gaussian best-fitting sqaured difference value

Gaussian best-fitting correlation value

Gaussian scale value

Gaussian amplitude value

Sum of absolute pixel values

Filter 1 output

Filter 2 output

First principal component

Second principal component

Zero for all candidates (i.e. no information)
A random number generated for every candidate (i.e. pure noise)

Brink + 2013




Real-Bogus: Feed these vectors to a Random Forest classifier
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A Brief Interlude on the
Hegemony of Homoscedasticity



Homoscedasticity in ML and Stats: the astronomer’s bane
x2: errors in 1D Economics errors in 2D

X. On the Criterion that a given System of Deviations
from the Probable in the Case of a Correlated System of
Variables is such that it can be reasonably supposed to have
arisen from Random Sampling. By KARL PEARsoN, F.R.S.,
University College, London®.
HE object of this paper is to investigate a criterion of the
probability on any theory of an observed system of errurs, 700
and to apply it to the determination of goodness of fit in the
case of frequency curves.
(1) Preliminary Proposition. Let z,, ;.. .z, be a system
of deviations from the means of n variables with standard 600
deviations @y, ¢,...0, and with correlations g, 73 793... -

rn—l. ne
Then the frequency surface is given by [
_ I_l,ﬂ x2 Br_l Zp T, 500
*{s’(np&:=)+2s=(n o .T:)} . .
Z="Ze y o+« (1) !
where R is the determinant !
1 719 13+ ¢+« TIn 400 |
T,l 1 793 « « « T2
731 739 1 e s o 3 300 i
a1 Tn2 Tng » . 1 200 I

and Rpp, Rpg the minors obtained by striking out the pth row
and pth column, and the pth row and ¢th column, g, is the
sum for every value of p, and S, for every pair of values of p :
and ¢. 100
Now let i

_o (Beop 2’ | yo (Bre 2p2q ,
2SR ) (R o) - @ .
Then : y* = constant, is the equation to a generalized “ ellip- P e
soid,” g‘ll over the surface oqf which thegfrequency of tl‘])e 0 50 100 190 200 250 300
system of errors or deviations #;, x; . . . &» is constant. The L

values which ¥ must be given to cover the whole of space

are from 0 to . Now suppose the “ellipsoid ”’ referred to

its principal axes, and then gy squeezing reduced to a sphere,

X,, X,, ... X being now the coordinates ; then the chances

of a system of errors with as great or greater frequency than

Pearson 1900 Everyone, entirety of 20th c. Hogg, Bovy, & Lang 2010



Homoscedasticity in ML and Stats: the astronomer’s bane

Random Forest Economics Probabilistic RF
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A Brief Interlude on the
Hegemony of Homoscedasticity

Astronomers cannot rely on the
ML community, we must join It!




Neural Networks are actually pretty simple*

Mass

Energy @



Neural Networks are actually pretty simple
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Neural Networks are actually pretty simple




Neural Networks are actually pretty simple







Deep Neural Networks use Many Hidden Layers; hard for many inputs

hidden layver 1  hidden layer 2 hidden layer 3

input layer
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Convolutional Neural Networks (CNNs) are designed for images

< 1] SCs.ryerson.ca ¢ O ( ) +

Draw your number here

Layer visibility




A Brief Interlude on image
Information:

Pixel-driven ML (e.q. neural nets)
Impose many fewer assumptions
apout where the information iIs



Astronomers
know how to

look at the
sky In 3 ways

2 10 50 500 1000 1500 2000 e
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Power Spectra




Astronomers
Know how to
look at the
sky In 3 ways

l Power Spectra

Bespoke Algorlthms




NNs can extract shape information from Weak Lensing maps

1 DES SV 2-pt

o simulated models
®®® (pires et al. 2009)

0.

0.1 02 03 04 05 06 0.7 0.8 0.9

Schmelzle+2017
(),




CNNs can extract masses from galaxy clusters by excising cores
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Networks don’t have to be In the abstract
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The DECam Plane Survey is a five-band optical and near-infrared survey of the southerr
Dark Energy Camera at Cerro Tololo. The survey is designed to reach past the main-
populations at the distance of the Galactic center through a reddening E(B — V) of !

exposure depths are 23.7, 22.8, 22.3, 21.9, and 21.0 mag (AB) in the grizY bands, wit Page 4 3 matCheS
footprint covers the Galactic plane with |b| < 4°,5° > [ > —120°. The survey pipeline s —

the positions and fluxes of tens of thousands of sources in each image, delivering positio Co nvolution al neu ra'

two billion stars with better than 10 mmag precision. Most of these objects are highly r :

Galactic disk, probing the structure and properties of the Milky Way and its interste networks (CNNS) are Ide,,,

processed images and derived catalogs are publicly available.

Key words: catalogs — surveys — techniques: photometric

1. Introduction photometric measurements o
: : of data for understanding the
Many of the Milky Way stars and much of its gas and dust DECaPS$ occupies a specic P age 5 10 matches

reside in a disk. Accordingly, observations of the Milky Way
disk are critical to understanding the Milky Way—particularly

o
observations toward the inner Galaxy, where most of the mass rol 51.1rv.<;,y (Cha}ngiers et acll We u Sed 8 0 /o Of th e
lies. At optical wavelengths, however, the interpretation of very similar set of filters an

observations of the Milky Way disk can be challenging due to is roughly 1 mag deeper in ; lmages to traln the netW...

the tremendous number of stars and due to extinction by dust, covers the entire sky abov .

motivating surveys of the disk at infrared wavelengths where epochs than DECaPS does
merbimntine fn menntler wndiand valuable survey for understa

targeting the Milky Way. Th

Schiafly {2018)
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LET;S CLASSIEY
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Morphology is a key weapon In the physicist’s arsenal
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Galaxy Zoo took morphology to the big data era

MORPHOLOGIES SO WE CAN
LEARN ABOUT.THEIR PHYSICS




Lintott+ 2008



Now we can study morphology like color
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Machine Learning let us take the next jump




This Is the starting gun of deep learning in astro

M refereed non refereed

A A A A

maps, 40 X 40) pooling 1 (32 maps, 20 x 20)

800
600

400

200 ---l-l-l

SO S S S S A S ES ST
3 layer 4 pooling 4
Vv avv vy vv v naps, 6 X 6) (128 maps, 4 X 4) (128 maps, 2 X 2)

Dieleman+2015



NEURAL IIEI’S TO LEARN

ABOUT I'IIYSIBS DIRECTLY
FROM GALAXY IMAGES




Zine = 8.153 Zire = 8.212
Zores = 8.130 Zored = 8.162

Lowest Zire

Ztvue = 7896 Z!I\.t = 7959
Zores = 8.211 Zores = 8.211

Zine = 9.211 Zoroe = 9.325
Zpres = 9.200 Zeres = 9.182

Highest Zie

Most underpredicted

Zinve = 9.336
Zores = 8.888

Most overpredicted

() . .

Zirve = 8.248 Zinve = 8.363
Zpres = 9.103 Zoreg = 9.057

(9) -

Zinve ™ 8.747
7prcd - 8 759

Zirve ™ 9.131
Zored = 9.125

Ziree = 7.997
Zpeed = 8.181

Ziree = 9.290
z‘:(m = 8 859

Zirve = 8.010
Z,,N, - 8647

Zirve = 8.308
Zoees = 8.187

Zive = 8.010
Zores = 8.647

Ziroe = 9.466
Zores ™ 9.180

Zwve ™ 9.405
Zores = 8.916

Zirye = 8.870
Zoree = 8 45‘6

ngc = 8293
Zores = 8.927

Zuve = 8.861
ZD(CC - 8 735

mages contain information about metallicity

e RMSE = 0.0851
NMAD = 0.0668
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1 1 1|

1500 -

1000 -

500 -

Number of galaxies

100

5
Number of galaxies

- Median i
- = +] RMSE
+1 NMAD

— Zpred = Ztrue

]

9.0 9.2

Wu & Boada +2019



Networks can tell us how they know something physical

AGC 8056 gas-poor gas-rich AGC 723474 gas-poor gas-rich

« AGC 220300 ' _ AGC 221013

Wu 2020



Networks can tell us how they know something physical
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Wu 2020



Cut to the chase: the entire spectrum from the image
W’“"‘ W W"‘- W‘“ WV"”‘W

L ey " e L e

Wu & JEGP 2020




Cut to the chase: the entire spectrum from the image

Flux Density (normalized)
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A practical example: finding low-z galaxies

SA GA is the premier spectroscopic survey of low-z satellites

378+ new satellltes around 101 hosts, using > 75,000 spectra Geha+ 17, Mao+21, Mao +24



A CNN robustly selects low-z galaxies

SAGA training sample

e

|
low-z low -Z j low-2Z

i
;

high-z high-z | high-z




A CNN robustly selects low-z galaxies

SAGA training sample XSAGA test sample

| <
. . |
~ . . |

low-z Icva-z loW-2 272 27? 277

s -
» . ‘e ' : '
high-z high-z high-z 777 7277 777

Wu, JEGP+ 22



CNN is ~15x better than photo selection tested nightly on DESI

N CNN

3"33 @ 1.5%
ee Photometric 2 0.9%
" Johp,

Percent of DESI LOWZ

n's
Tal k . targets at z < 0.03

Darragh-Ford, Wu, + JEGP + 22
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Legacy Survey grz

.




HSC Survey grz
- ‘ (similar to LSST)




Hubble F606W/F814W
(similar to Roman)

’
N

" We are just gefting started... -



What is ML in Astronomy?
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Why Unsupervised (or Self-Supervised) Learning?

hypothesis generation

In the big data era is

an unsolved problem



Finding the weirdest Galaxies in SDSS spectra

; o . 200000 — . . ;
T m — - - outlier threshold ;
Y .',8 L . 150000 :
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£ ‘ :.f.f:::e S " 50000 :
L I DI N 0.4 0.5 0.6 0.7
....... 7=70.0000 +/F Q0000 (1,00, Galxy, | . . Weirdness
2e6 de-redshifted Random Forest to find Weirdness score: on
spectra with 15000 similarity: how often in average how far from every
“features” the same leaf? other galaxy?

Baron & Poznanski 2017



Detailed studies with KCWI show an E+A galaxy with AGN winds

20 stellar emission 20 [OIII] emission 20 —-960 to — 860 km/s 20 —-860 to — 750km/s 20 —750 to — 640km/s
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http://galaxyportal.space

We also need big data discovery beyond outliers: gaps

14

A GAP IN MAIN SEQUENCE

Jao+ 2018, Contardo, Hogg, Hunt, JEGE Chen ,2022



But: Machine Learning is also a stumbling block
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What is ML in Astronomy?
Supervised vs. Unsupervised
Supervised Learning in Astronomy

Supervised Learning: Galaxy Images
Unsupervised Learning in Astronomy
Unsupervised Learning: Search By Image



How do you find data in an archive?

NASA science image archives allow users to find
Images by metadata:
What camera, filter, exposure time, PI, position?

Catalogs of the objects contained in those

images provide a limited search of the data itself:

Find images containing objects of a given
brightness, position, basic shape ...

We are developing tools to answer a much
harder question:

If | have a complex image, how can | find all the
Images in the archive that look like it?

W)

C

2028_02 WFC3/IR (color) ANY |fi60w ~|/|f125w ~|/|f098m ~| b Lttt el o] ﬁ i i
Lighter Darker invert  advanced contrast controls | PS1 controls | HSC controls B et
DAOphot SExtractor ) 2MASS GSC2 FIRST GALEX Gaia

atalog Overlay Region:  Entire image (slower) @Visible area (faster) set Region

Aaron Barth @AaronJBarth - Apr 9

Found in the HST archive today: a nice example of an X-shaped boxy
bulge galaxy. This is IC 2059, from program 14840, the original pilot
gap-filler program. Similar to the structure of NGC 1175.




The Prototype “Search by Image” Method
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The Prototype “Search by Image” Method

Carina Image tSNE Reduced
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The Prototype “Search by Image” Method
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The Prototype “Search by Image” Method
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Search by Image: a problem with many approaches for many sciences

Self-Supervised Learning is a generic
approach to unlabeled data:

Modify images through rotation, stretch,
cropping, and associate them to each other.

BT T] [CTT Mrepresentaton[T’II T [T T ]

Earth Science Is interested in similar problems
with unlabeled data:
Finding hurricanes, wildfires, ice movement, etc

SpaceML is a team of industry professionals
working with Earth Science on DL approaches

We teamed up with SpaceML to test SSL
approaches and provide verification data sets

Walker Stevens for the SpaceML team



How do we optimize this approach? Which way is best?

We need a sample of

Images with known similarities

to test, improve, and compare our

algorithms!



The Hubble and Planetary Image Similarity Projects (HISP/PISP)

HISP and PISP aims to create a large database of similarity information
between segments of Hubble images (ACS & WFC3) and between segments
of Mars Reconnaissance Orbiter (CTX) .

* The images are compared by humans in a citizen science project.

* We also designed the project for community impact:

* We employ service-industry professionals from the local area near STScl in
Baltimore who were impacted by the Covid-19 pandemic.

* They are paid a fair wage for their work through the Amazon Mechanical
Turk (AMT) system.

White & JEGP in prep
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Sample includes nebulae, clusters, star formation regions
NGC5694 WFPC2/WFC F555W
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Image entropy selects cutouts with good contrast
NGC1073 ACS/WFC F435W
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Select similar images from the Hubble Space Telescope

Comparison image Which of these 15 images are similar to the Comparison Image at left? No images are similar Submit

Submit

Submit Submit




Select similar images from the Mars Reconnaissance Orbiter

Comparison image (] No images are similar
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Click to show closest images from any cluster
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Click to show closest images from any cluster
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Click to show closest images from any cluster
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The Self-Supervised Learning approach works!

Walker Stevens for the SpaceML team
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