Gemini Strategic Science Plan

Virtual Town Hall

Elena Sabbi

Exploring the Universe, Sharing its Wonders!
A major revitalization of Gemini Observatory capabilities and instrumentation

- GN mirror recoating
- GNIRS LR IFU
- IGRINS-2
- GNIRS HR IFU
- GN M2
- GPI 2.0
- GNAO+GIRMOS
- MAROON-X Fac.
- F2 MOS
- GHOST
- GS mirror recoating
- F2+GeMS
- SCORPIO
- Gemini Program Platform
- Rubin Sci Ops
Written in response to the rapidly changing astronomical landscape
A major revitalization of Gemini Observatory capabilities and instrumentation

- GN mirror recoating
- GN M2
- GPI 2.0
- GNAO+GIRMOS
- MAROON-X Fac.
- GNIRS LR IFU
- IGRINS-2
- GNIRS HR IFU
- GHOST PRV
- SCORPIO
- F2+GeMS
- F2 MOS
- GHOST
- GS mirror recoating
- Gemini Program Platform
- Rubin Sci Ops
2024-2040 A new Era for TDA/MMA

- LSST
- RST 5 yrs. mission (+5 yrs. extension)
- SWIFT
- COSI
- LIGO O4
- LIGO O5
- SKA
- LISA
- TDA & MMA

Years:
- 2025
- 2030
- 2035
A Transient Universe

- Study dark matter & dark energy
- Mapp NEA & Kuiper belt objects
- Detect transient astronomical events (SNae, GRBs, gravitational lensing)
- Optical counterparts of GWs from the LIGO-VIRGO-KAGRA collaboration (and LISA)
Gemini in TDA/MMA

Incorporate Gemini in the Astronomical Event Observatory Network

DRAGONS: a new end-to-end pipeline

Rapid response & Outreach

Instruments upgrades
2024-2040 A new Era for TDA/MMA

- LSST
- RST 5 yrs. mission (+5 yrs. extension)
- SWIFT
- COSI
- LIGO O5
- SKA
- TDA & MMA
- Software infrastructure for TDA
- SCORPIO
- GNAO+GIRMOS

- 2025
- 2030
- 2035
8-channel imager + spectrograph:
- Simultaneous observations in g, r, i, z, Y, J, H, and Ks (FoV 3’x3’)

Science Goals:
- Study the temporal evolution of the SED of transient events
- Multiband monitoring of variable and binary stars
- Characterize the electromagnetic spectrum of gravitational waves counterparts – binary neutron star mergers light up the entire electromagnetic spectrum!!
MOAO-fed Multi-Object IFU FoR 2’x2’ + imager (85”x85”)
- 4 targets, spatial resolution 0.025, 0.05 & 0.1 ”/spaxel.
- R 3000 & 8000
- IFUs field: 1”x1”, 2”x2”, 4”x4”
- Wavelength: 0.95-2.5 microns

Science goals:
- Study the evolution of the universe from z~10 to the present days
- Investigate high-z galaxy mergers in dense clusters
- Dense star-forming regions in the MW and the LG (resolve embedded Class I and II YSO clusters)
• Planets and stars formation
• Discovered planets that might sustain life
• Galaxy evolution
• First stars & galaxies
2024-2040 Landscape

- JWST
- ELT
- US-ELT
- ALMA
- ngVLA
- HWO

Stars & Galaxies
Exoplanets

2025
2030
2035
2024-2040 Landscape

- GMOS
- GHOST
- GNIRS
- IGRINS-2
- GEMS + F2
- GNAO+GIRMOS
- JWST
- ELT
- US-ELT
- ALMA
- ngVLA
- TESS
- PLATO
- RST | CORONOGRAPHY
- HWO

Stars & Galaxies
Exoplanets

Timeline:
2025
2030
2035
Science cases:
- Chemodynamic analysis of stellar populations;
- Exoplanets masses and interior structures;
- IGM temperature and enrichment at the end of the reionization epoch (z<6.5);
- High-ionization lines in core-collapse SNe (disappear within 1-2 days) – determine the progenitor;
- Origin of heavy elements.

- 383 – 1000 nanometers
- R: 56,000 (2 IFU) & 76,000 (1 IFU)
- FOV: 7.34’x7.34’
- IFU min sep 102’
Science cases:
• Chemodynamic analysis of stellar populations;
• Exoplanets masses and interior structures;
• IGM temperature and enrichment at the end of the reionization epoch (z<6.5);
• High-ionization lines in core-collapse SNae (disappear within 1-2 days) – determine the progenitor;
• Origin of heavy elements.
IGRINS-2 & GPI-2

IGRINS-2

High-res spectroscopy (R~45,000 145-250 nm)
C/O in the planet's atmosphere tells us where the planet formed
Covers H$_2$O, CO, CH$_4$, and OH (the building blocks of the amino acids needed for life)
Asymmetric signatures give information about day and night/weather variations, wind speed, etc

GPI 2.0

Extreme AO coronograph (97-240 nm) IFU spectroscopy
Trace distribution and relative abundance of silicates and complex molecules across circumstellar and protoplanetary disks
Study disk chemical evolution as a function of the parent star and the surrounding environment
Gemini’s capabilities in 2028

Imaging
- GMOS-N & S
- SCORPIO
- NIRI
- GSAOI
- GNAOI
- F-2
- 'Alopeke & Zorro

Spectroscopy
- GHOST
- SCORPIO
- F-2
- GMOS-N & S
- MAROON-X
- IGRINS-2
- GNIRS
- GPI-2

IFU
- GHOST
- GNIRS LR+HR
- GPI-2 (AO)
- GMOS-N & S
- GIRMOS (AO)
What critical instrumentation capabilities should Gemini Observatory develop or maintain in the next 10 to 15 years? Should Gemini develop new workhorse instruments for its two sites, or are multiple specialized instruments preferable?

What synergies with other major space and/or ground-based missions and surveys Gemini Observatory should pursue? How can this be optimized?

How can Gemini pave the path for US-ELT and HWO?

What data and/or archive improvements would increase Gemini’s scientific return in the 2030s?

What other instruments would benefit from the new MOAO / GLAO system?
Community Brief Reports

June 1st September 13th

Submit a 2 page (excluding References) in pdf format to gemini-community-papers@noirlab.edu

The Briefings should include:
1 page for scientific background and goals
1 page for the technical recommendations to reach the goals.
Gemini Scientific Leadership 2030s

- Develop & Update Science Instrumentation & Infrastructure
- Relationship with Local Communities & General Public Engagement
- Staff Advancement & DEI Growth
- Environmental impact
Exploring the Universe, Sharing its Wonders!