Examining the Multiplicity of the Galactic Halo through Lick A.O., Speckle Imaging, and More!

Zachary Hartman

Gemini Science Fellow

Gemini North Observatory/NSF's NOIRLab

Zachary Hartman, R. Michael Rich, Sébastien Lépine, Melodie Sloneker, Bokyoung Kim, Wei-Chun Jao

 GeorgaState University:

The Solar Neighborhood

- I,864,570 stars with proper motions larger than 20 mas/yr within 200 pc
- Large majority are lowmass stars

What is a Galactic Halo Star?

COSMOS - Swinburne University

Kim \& Lépine 2022, Top left panel of Figure 2

Why should you care about Galactic Halo stars?

- From an Exoplanet perspective:
- Exoplanets are supposed to be rare around them
- Need metals to form planets and there are no planets
- Boley et al. 2021, Yoshida et al. 2022
- From a dark matter perspective:
- Using halo wide binaries to examine the separation distribution of these systems
- Put constraints on dark matter candidates
- Yoo et al. 2004

Period vs. Planet Radius	3.5 to 10 days	10 to 29 days	29 to 50 days
1.0 to $2.0 R_{\mathrm{J}}$	0.52%	2.96%	18.2%
	$+0.01 /-0.01 \%$	$+0.18 /-0.16 \%$	$+0.85 /-1.99 \%$
0.5 to $1.0 R_{\mathrm{J}}$	2.14%	27.7%	undefined
	$+0.02 /-0.02 \%$	$+10.4 /-4.63 \%$	
0.1 to $0.5 R_{\mathrm{J}}$	undefined	undefined	undefined

Upper limits on Planet Occurrence around Galactic halo stars of potentially extragalactic origin. Table I from Yoshida et al. 2022

Why should you care about Galactic Halo stars?

- From an Exoplanet perspective:
- Exoplanets are supposed to be rare around them
- Need metals to form planets and there are no planets
- Boley et al. 2021, Yoshida et al. 2022
- From a dark matter perspective:
- Using halo wide binaries to examine the separation distribution of these systems
- Put constraints on dark matter candidates
- Yoo et al. 2004

Why should you care about Galactic Halo stars?

- Contains some of the oldest stars we know of
- Tracer of dynamical history of the Galaxy
- Han et al. 2022
- Contains some of the most metalpoor stars we know of
- Tracer of chemical history of the Galaxy
- Lépine et al. 2007

Why should you care about Galactic Halo stars?

- From a star formation standpoint:
- They are still a puzzle
- Even though our understanding of star formation as a function of metallicity is improving
- Rastegaev 2010
- Moe et al. 2019
- To better understand the formation of halo stars, we need more precisely determined parameters of the current
 halo population.

Why should you care about Galactic Halo stars?

- From a star formation standpoint:
- They are still a puzzle
- Even though our understanding of star formation as a function of metallicity is improving
- Rastegaev 2010
- Moe et al. 2019
- To better understand the formation of halo stars, we need more precisely determined parameters of the current
 halo population.

To better understand this, we need to find binaries!

- What parameters do we need?
- "The dependency of the multiplicity frequency and their associated orbital parameters on primary mass should contain the imprint of the physical processes at play throughout the lifetime of stellar populations."
- Duchene and Kraus 2013
- Period/Separation Distribution
- Eccentricity Distribution
- Multiplicity fraction
- We need binaries where the mass can be determined
- Mass-ratio Distribution
- Mass-Luminosity relation
- Luminosity function of the Galactic halo

Horch et al. 2019

Disk Multicity Studies over the decades

- Over the past decade, a lot of work has been done to fill in our knowledge of the multiplicity fraction as a function of primary mass
- Tokovinin - F-G Sample
- RECONS - M-dwarfs
- $\sim 50 \%$ of FGK stars in the disk are in binary systems.
- This fraction varies as a function of primary mass

Offner et al. 2023

History of Galactic Halo Multiplicity Studies

Latham et al. 2002

[^0]- Carney-Latham Spectroscopic Binary Survey
- Carney \& Latham 1987
- Observed I464 FGK stars looking for spectroscopic binaries (SB)
- Found that the disk and halo populations had a similar SB fraction
- However, in a re-analysis of their results, Moe et al. 2019 found that the halo had a larger SB fraction than the disk.

History of Galactic Halo Multiplicity Studies

- Different multiplicity fractions have been found over the past decade using high angular resolution imaging
- Jao et al. 2009 (speckle imaging)
- 62 K/M subdwarfs
- $26 \% \pm 6 \%$
- Rastegaer 2010 (combination of speckle and RV observations)
- 233 metal-poor subdwarfs
- $33 \%_{-7 \%}^{+6 \%}$
- Ziegler et al. 2015 (Robo-AO)

> - 344 cool subdwarfs
> - $12.5 \% \pm 1.9 \%$

Galactic Halo Sample (Rich and Lépine Edition)

Proper motions > $150 \mathrm{mas} / \mathrm{yr}$

Lick Adaptive Optics Reductions

- Began a survey of nearby high proper motion stars believed to be part of the Galactic halo.
- In total, ~ 800 stars have been observed
- Almost none fully reduced and analyzed before 2023

- Currently reducing ShARCS data
- Started in 2014
- Using the SImMER Reduction code
- Savel et al. 2022

Lick Adaptive Optics Reductions

Lick Adaptive Optics Reductions

$0.47^{\prime \prime}$ Binary Candidate

0.56" Binary Candidate

Lick Adaptive Optics Survey

147 stars have been reduced from 2014 to Summer 2019

Lick Adaptive Optics Survey

Multiplicity fraction for only Lick observed stars: $17 \% \pm 3.7 \%$

Current Status of Lick Observations (with some additional targets included)

Getting Some Help from the Geminis

Gemini Observatory/NSF's NOIRLab
J. Pollard

"Expanding" the Search to Closer Separations and Gaia

- Using Gaia DR3, we have selected a sample of neary halo/thick dick stars.
- Tangential Velocities > 150 km/s
- Distances <100 pc
- $\mathrm{V}<18$
- No white dwarfs
- In total, we find II49 stars.
- Applying for Speckle time on Gemini
- Through Gemini proposals and data on the Gemini Archive, we have observed or have data on 174 stars in our sample.

Results of Speckle Imaging Campaign (So far...)

$$
\begin{array}{ll}
\rho=0.307 " & \\
\Delta m_{\text {red }}=1.42 & \\
\Delta m_{\text {blue }}=2.31 & \rho=0.06 " \\
\rho=0.316^{\prime \prime} & \Delta m_{\text {red }}=2.83
\end{array}
$$

$$
\Delta m_{\text {red }}=1.42
$$

$$
\Delta m_{\text {blue }}=2.33
$$

$$
\rho=0.473^{\prime \prime}
$$

$$
\Delta m_{\text {red }}=3.0
$$

$$
\Delta m_{\text {red }}=0.77
$$

Results of Speckle Imaging Campaign (So far...)

- We have found 13 binaries with speckle imaging.

Results of Speckle Imaging Campaign (So far...)

- Multiplicity fraction for speckle observed sample: $10.3 \% \pm 2.6 \%$

Combined Results between the Speckle and Lick AO Data

- Multiplicity fraction for the combined observed sample: $11.8 \% \pm 2.4 \%$

What about RUWE, IPD_MF, and Gaia NSS?

- We find 18 speckle or AO detected binaries in our survey so far...
- We checked our results against known Gaia parameters which might indicate binarity
- RUWE
- Observed sample - 22
- Binary - 13
- IPD_MF
- Observed Sample - 9
- Binary - 3
- NSS
- Observed Sample-4
- Binary - 0

Expanding to Space!!!!

Low-mass, metal-poor eclipsing binaries from TESS light curves (в. Kim)

- From Kim \& Lépine (2022), we obtain 207164 K and M dwarfs with TIC IDs under the following criteria:
$[\mathrm{Fe} / \mathrm{H}]_{\text {grid }}<-1.0$
Absolute G magnitude $>5.5 \mathrm{mag}$
- Among 4476 stars with TESS light curve files, we found 20 eclipsing binary candidates (red-filled circles).

The total EB Fraction ~ 0.45 \% (20/4476)

Low-mass, metal-poor eclipsing binaries from TESS light curves (в. Kim)

- Gray points: 2769 K \& M dwarfs with Gaia DR3 RVs and TESS light curve files
- Red-filled circles: 10 eclipsing binary candidates
- Among those candidates, 10 systems have radial velocities from Gaia DR3.
- The majority of these systems follow the thick disk kinematics.

Hubble Halo Survey (M. Sloneker)

- Search through archival HST data for other programs and find halo stars in the background
- Able to search for fainter companions
- Found 26 binaries out of 284 systems
- Multiplicity fraction $=\sim 9 \%$

Examining the HST Results (M. Sloneker)

Simulation Multiplicity

 Fractions: FGK - 23\%M - 16\%

Conclusions

- Determining precise parameters for the nearby Galactic halo population will improve our understanding of how these old, metal-poor stars formed.
- We are conducting a multi-telescope, multi-high angular resolution method search for close companions
- Combining the capabilities of ground-based adaptive optics and speckle imaging with that of space-based telescopes.
- We are finding a multiplicity fraction that is discrepant with results from other studies.
- Time for a spectroscopic survey!

Speckle Imaging

Videos from Nic Scott, CHARA

Current Status of Lick Observations (with some additional targets included)

[^0]: Orbital Phase

