Roberto Decarli INAF-OAS Bologna

The assembly of quasars and their host galaxies in the early Universe

$z=6 \rightarrow$ age of the universe: 1 Gyr

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time to ...

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time to ... put black holes together

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time to ... put black holes together assemble galaxies

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time to ... put black holes together assemble galaxies form metals and dust

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time to ... put black holes together assemble galaxies form metals and dust form structures

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time to ... put black holes together assemble galaxies form metals and dust form structures ionize the Universe

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time

Extremely luminous and star-forming

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time

Extremely luminous and star-forming ideal signposts for structures

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time

> Extremely luminous and star-forming ideal signposts for structures ideal background sources for abs studies

 $z=6 \rightarrow$ age of the universe: 1 Gyr Not much time

> Extremely luminous and star-forming ideal signposts for structures ideal background sources for abs studies conditions absent in the local universe

Numerical predictions limited by:

- volume
- prescriptions on BH seeds
- prescriptions on BH feeding
- prescriptions on feedback

Habouzit et al. (2022)

Zoomed-in sims predict:

- morphology
- size
- ISM conditions (n, T, U, ...)
- abundances
- CGM
- environment

Lupi et al. (2021)

Zoomed-in sims predict:

- morphology
- size
- ISM conditions (n, T, U, ...)
- abundances
- CGM
- environment
- \rightarrow Observable quantities!

Lupi et al. (2021)

Imaging dust and gas at 100s pc resolution

Imaging dust and gas at 100s pc resolution

Imaging dust and gas at 100s pc resolution

No BH signature on gas dynamics

The central beam is gas dominated!

Walter et al. (2022)

Multi- λ campaigns

The advent of JWST

Ding et al. (2023)

The advent of JWST

The advent of JWST

J2236+0032

Ding et al. (2023)

Project I: Multi-line investigation of the ISM of a quasar host at z~6.5

[CII] luminosity distribution

The luminous QSO PJ183+05 @ z=6.44

Multi- λ campaign: Dust continuum

Decarli et al. (2023)

Multi- λ campaign: Dust continuum

Multi- λ campaign: Lines

Emission line predictions

Radiation field templates

Decarli et al. (2023)

Emission line predictions

Radiation field templates

Decarli et al. (2023)

Emission line predictions

Radiation field templates

Energy level population

Data vs Radiative Transfer models

Decarli et al. (2023)

Mass budget

Mass budget

Project II: A quasar-satellite merger at z=6.2

A quasar-satellite merger at z=6.2

Decarli et al. (2019), Farina et al. (2019)

Rest-frame optical spectroscopy of the quasar

Loiacono et al. (in prep)

Rest-frame optical spectroscopy of the quasar

Loiacono et al. (in prep)

Eigenvector analysis

Black hole mass estimates

Loiacono et al. (in prep)

BH-host galaxy relation at z=6.2

Loiacono et al. (in prep), Farina et al. (2022)

Spectral properties throughout the system

Decarli et al. (in prep)

Decarli et al. (in prep)

Decarli et al. (in prep)

Decarli et al. (in prep)

Decarli et al. (in prep)

Stellar mass and SFR of the companions

Origin of the $Ly\alpha$ halo

Farina et al. (in prep)

Origin of the $Ly\alpha$ halo

Lyα halo: - Detected in Hα and [OIII]! - But only close to the quasar

Farina et al. (in prep)

Origin of the Ly α halo

IN

7

Ly α halo: - Detected in $H\alpha$ and [OIII]! - But only close to the

quasar

Farina et al. (in prep)

High dust content & opacity, $L_{IR} \sim 10^{13} L_o, T_{dust} \sim 47 K$

High dust content & opacity, L_{IR} ~10¹³ L_o , T_{dust} ~47 K

Copious gas reservoirs (~ 10^{11} M_o), both ionized and molecular

High dust content & opacity, $L_{IR} \sim 10^{13} L_o$, $T_{dust} \sim 47 K$

Copious gas reservoirs (~ 10^{11} M_o), both ionized and molecular

Quasar photoionization & excitation not required (but likely contributing)

Metal rich, ~ 10^{11} M_o, dominated by AGN photoionization

Metal rich, ${\sim}10^{11}~M_{\scriptscriptstyle 0},$ dominated by AGN photoionization

Companions:

About half solar metallicity, a few $10^9\ M_{\circ},\, SF$ photoionization, very young burst

Conclusions – Project II

Halo:

Metal rich, ${\sim}10^{11}~M_{\scriptscriptstyle 0},$ dominated by AGN photoionization

Companions: About half solar metallicity, a few 10⁹ M_o, SF photoionization, very young burst

Outflow+BLR scattering rather than recombination

0

log Hell/HB

A_v = Dust extinction Z = metallicity AGN vs SFR = dominant source of photoionization T_a = electron temperature U = ionization parameter n = electron density P_a = electron pressure PDR/HII = fraction of [CII] arising from PDRs vs HII regions