Image Credit: Aaron Geller, Northwestern

OBSERVING THE DIVERSITY OF NEUTRON STAR MERGER COUNTERPARTS WITH GEMINI

JILLIAN RASTINEJAD

NEUTRON STAR MERGERS: GW170817 AT 40 MPC Merge Kilonova NS NS Gravitational Waves Jet Villar+17 GW170817's Κ with data compiled from kilonova, 18 Andreoni+17; Arcavi+17; Coulter+17; AT2017gfo Afterglow Cowperthwaite+17; Diaz+17; Drout+17; **Short GRB** Ξ̃22 Evans+17; Hu+17; Kasliwal+17; Lipunov+17; Pian+17; dd 24 Pozanenko+17; Shappee+17; 26 Smartt+17; Tanvir+17; Troja+17; Utsumi+17; W1, F<u>2</u>75W W2, M2 Observe 28<u>∟</u> F225W F336W,u,U 20 10 15 25 30 Valenti+17 5 MJD - 57982.529

3

What can we learn from kilonovae?

Equation of State (maximum mass of NS)

The origin of heavy (r-process) elements

Slide adapted from Wen-fai Fong

Impact on environment & chemical evolution

HST/Northwestern/W. Fong et al

C I E R A CENTER FOR INTERDISCIPLINARY EXPLORATION AND DESEADON IN ASTRONOMYSICS

Searches for Kilonovae

e.g., Smartt+17, Yang+18, Andreoni+21

Blind Searches in Large Surveys

LIGO

Virgo

Searches for Kilonovae

e.g., Smartt+17, Yang+18, Andreoni+21

6

Blind Searches in Large Surveys

Gravitational Waves

Fermi

Virgo

Comparing all SGRB KN observations to AT2017gfo

Kilonova candidates are more luminous in bluer bands than AT2017gfo

Deep upper limits of 10 bursts fall below 1:1 ratio

Rest-frame optical KNe observations show span of ~100 in luminosity

Northwestern

See also Gompertz+18, Ascenzi+19, Rossi+20

С

The Gamma-ray Burst Paradigm

Kouveliotou et al. 1993

C I E R A CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

GRB 211211A: Exciting Ingredients

An ambiguous gamma-ray light curve

Rastinejad+22

Observing a red excess following the **50-s duration GRB 211211A at 350 Mpc**

Observing a red excess following the **50-s duration GRB 211211A at 350 Mpc**

С

The 2nd-closest kilonova to date comes from a surprising source: the **50-s duration GRB 211211A**

The 2nd-closest kilonova to date comes from a surprising source: the **50-s duration GRB 211211A**

Afterglow-subtracted Optical/NIR data + KN Model

С

Nearly the same K-band luminosity as AT2017gfo

 K-band fades on similar timescales to AT 2017gfo

Good fit to kilonova model of $M_{\rm ej}{\sim}0.04~M_{\odot}$

The 2nd-closest kilonova to date comes from a surprising source: the **50-s duration GRB 211211A**

International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani; NASA/ESA

Gemini Observatory is uniquely poised to observe short GRB counterparts & their host galaxies

Observational Clues

Gemini Observatory

Northwestern

1. Discovered across the sky by Fermi + Swift

Wide coverage of Northern and Southern sky

Gemini Observatory is uniquely poised to of counterparts & their host galaxies

Observational Clues

- 1. Discovered across the sky by Fermi + Swift
- 2. Accompanied by broadband afterglows & fast-fading kilonovae

Rapid TOO Gemini observations account for ~1/3 of detected sGRB optical afterglows

Gemini Observatory

Northwestern

Think about what images are best here - maybe just show F2 + NIRI +

Anything that shows rapid response?

Wide coverage of Northern and Southern sky

Rapid ToO response + diverse suite of instruments

CIERA

GMOS?

Gemini Observatory is uniquely poised to observe GRB counterparts & their host galaxies

Observational Clues

1. Discovered across the sky by Fermi + Swift

2. Accompanied by broadband afterglows & fast-fading kilonovae

Northwestern

Wide coverage of Northern and Southern sky

Rapid ToO response + diverse suite of instruments

Rapid simultaneous broadband imaging will constrain AG contribution, KN ejecta mass & composition, etc.

Cycle 1 JWST program to obtain late-time IR spectra of SGRB kilonova (PI: Berger)

GW170817's kilonova AT2017gfo, Villar+17

Gemini Observatory is uniquely poised to observe GRB counterparts & their host galaxies

Northwestern

Observational Clues

1. Discovered across the sky by Fermi + Swift

2. Accompanied by broadband afterglows & fast-fading kilonovae

3. Associated with galaxies across z \sim 0 - 3

Wide coverage of Northern and Southern sky

Rapid ToO response + diverse suite of instruments

Optical depths to ~26th mag, NIR to ~24th mag

GMOS afterglow detection 9 hours post-burst, Paterson+20

Gemini Observatory is uniquely poised to observe short GRB counterparts & their host galaxies

GMOS afterglow detection 9 hours post-burst, Patersor +20

Offsets from hosts and number of events over time -> NS merger kick velocities, delay time distribution see Paterson+20, Fong+22, Nugent+22, O'Connor+22, Zevin+22

Conclusions

- I. Rapid ToO Gemini programs made major contributions to a large catalog of afterglow and kilonova observations, uncovering diversity in the kilonova population.
- II. In 21B, Gemini/NIRI uncovered a NIR transient accompanying the long GRB 211211A that peaked at ~same K-band luminosity at AT2017gfo and faded at a similar rate. The afterglow-subtracted photometry is well-fit with a kilonova model of ejecta mass ~0.04 M_☉.
- III. In the future, Gemini instruments (including SCORPIO) will complement spacebased follow-up of short GRB kilonovae, probing their ejecta masses and compositions.

<u>Thanks to a large team</u>, including Wen-fai Fong, Charlie Kilpatrick, Kerry Paterson, Andrew Levan, Ben Gompertz, Matt Nicholl, Gavin Lamb, Nial Tanvir, Daniele Malesani and **our invaluable Gemini astronomers, including Jen Andrews and Kristin Chiboucas**.

TER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

GRB 211211A: Implications

What causes the extended gamma-ray emission? Favored explanations:

NSBH Merger: late-time fall-back accretion from tidally-disrupted material; e.g. Rosswog+07, Desai+19

*Tentatively disfavored due to larger blue component

Magnetar Remnant: rotational energy imparted into relativistic wind; e.g. Metzger+08, Gompertz+14, Gompertz+22

*Tentatively favored due to ability to explain consistent EE timescales (~100s when system becomes opticallythin neutrinos)

GRB 211211A: Implications

What causes the extended gamma-ray emission? Favored explanations:

NSBH Merger: late-time fall-back accretion from tidally-disrupted material; e.g. Rosswog+07, Desai+19

Magnetar Remnant: rotational energy imparted into relativistic wind; e.g. Metzger+08, Gompertz+14, Gompertz+22 arXiv:2205.05008

Future coincident GWs + LGRBs may decide!*

*see Sarin, Lasky & Nathan 2022

GRB 211211A: Implications

X-ray Light Curves as a Blueprint for Future LGRBs from NS mergers

Spectral evolution and X-ray light curves of EE-SGRBs and GRB 211211A show strong similarities (e.g., Gompertz+14, 22)

Blueprint for identifying future mergers with >2s gamma-ray durations

CIERRA CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

GRB 211211A: Implications

Comparison of ejecta masses + velocities

3-component KN model: red + blue dynamical, purple disk ejecta (Nicholl+21) Comparable ejecta mass and velocity compared to past kilonovae

Ejecta Mass & Velocity Constraints

Current short GRB observations constrain blue ejecta diversity **better than red ejecta**

Also compare to Kasen+17 grids: ejecta mass & velocity constraints are **model dependent** and can vary on the order of ~0.1 M_{\odot} (also see Ascenzi+19)