MEASURING HOT JUPITER OCCURRENCE RATES IN HIGH-α STELLAR POPULATIONS WITH DECam

Ali Crisp, Jonas Klüter, & Matthew Penny (for the MISHAPS Collaboration)

Louisiana State University

acrisp3@lsu.edu

DECam at 10 | September 13, 2022

Matthew Penny (LSU)

Marz Newman (LSU)

Ethan Fahimi (OSU) + the rest of the MISHAPS Collaboration

Clara Martínez-Vázquez (Gemini + NOIRLab)

Thomas Beatty (UW)

Joey Rodriguez (MSU)

HOT JUPITERS

- First type of exoplanet discovered around a sunlike star, but relatively rare.
- Gas giants with $P_{orb} < 10$ days.
- Short enough orbital periods and large enough radii for easy transit searches.

Alysa Obertas (@AstroAlysa)

MISHAPS

Multiband Imaging Survey for High-Alpha PlanetS

- Find and characterize candidate transiting hot Jupiters and their host stars.
- Focus on those with 0.8 < P < 3.4 days.
- Measure a hot Jupiter occurrence rate for each population.
- Compare to thin disk rates found with, e.g., Kepler.

WHY α -ABUNDANCE?

- Far enough out, the protoplanetary disk contains ices.
- Forming a giant planet requires gathering larger amounts of material before the disk dissipates.
- Gathering ices aids in mass gain.
- Ice = Oxygen = $[\alpha/Fe]$.
- So, higher [α/Fe] could reasonably affect formation rates.

WHY α -ABUNDANCE?

- Giant planet formation strongly correlated with metallicity.
 - $f_{GP} \propto 10^{2.0}$ [Fe/H] (Fischer & Valenti, 2005)
 - $f_{GP} \propto 10^{1.2} \, [\text{Fe/H}]$ (Johnson et al., 2010)
- [Fe/H] and [α /Fe] are strongly correlated in disk stars, so it's difficult to disentangle which increases the occurrence rate with current demographics.
- Hypothesis: α -abundance [α /H]=[α /Fe]+[Fe/H] more important than [Fe/H] alone.

Left: Bulge [Fe/H] and & [α/Fe] values from Dong et al. 2014, Griffith et al. 2020, Weinberg et al. 2019, & Zoccali et al. 2017; GC [Fe/H] & [α/Fe] values from Cordero et al. 2014, Forbes & Bridges 2010, and Johnson & Pilachowski 2010
Right: Fischer & Valenti 2005

WHY DECAM?

- To get an occurrence rate with 10% uncertainty, we need ~100 hot Jupiters.
- To get ~100 hot Jupiters, we need photometry with 1% precision on ~1 million stars.
- Faint targets mean follow-up is tough.
- DECam's large FOV, high z sensitivity, and fast filter change all us to do most of the traditional photometric follow-up as part of the survey.

WHY GLOBULAR CLUSTERS (AGAIN)?

- Studies such as Gilliland et al. (2000) returned no hot Jupiter candidates in 47 Tuc, ω Cen, and other GCs.
- Masuda & Winn (2017) finds that only 2.2 planets would be expected in 47 Tuc if its occurrence rate matched *Kepler's*.
- Previous studies did not have the sample size or sensitivity to rule out *Kepler*'s rate with sufficient confidence.
- With DECam's sensitivity and FOV, we expect to detect O 10 planets per cluster with 95% confidence.
- Okay, so why the difference in survey design then?
 - Bulge little hope of follow-up, so more nights needed to ensure multiple transits and good chromatic measurements to rule out false positives O100-1000 candidates.
 - Clusters brighter stars and fewer expected candidates mean we can relax some measurement constraints, and thus require fewer nights of data.

FALSE POSITIVES

- Signals that appear to be transits, but aren't
- Sources include systematics, bad seeing
- Largest source is various eclipsing binaries

740.7

740.8

740.9

741.5

741.6

741.7

741.8

739.5

739.6

739.7

739.8

739.9

740.5

740.6

FIRST BULGE CANDIDATES

12

"BULGE" RESULTS

ω CEN PRELIMINARY RESULTS

- Haven't had the data long enough for a thorough search.
- Preliminary work done by REU student Ethan Fahimi (OSU senior).
- Estimated occurrence rate to be <0.004 planets per star at 95% confidence for a single chip (~7,000 stars).

Injected transit in an ω Cen lightcurve, returned by search

Real detection in an ω Cen lightcurve (further investigation needed to determine if it's a real transit)

SOURCE CHARACTERISATION WITH SED FITTING

- It is easy for one Star, but we want to know it for O(|Mi|) stars
- Fit theoretical isochrones to:
 - DECam magnitudes: (u) g r i z Y
 - NIRVVV magnitudes: J, H, Ks

- Estimates:
 - stellar properties (radii, masses, metallicities)
 - distances & extinctions
 - likelihood that a star belongs to bulge or disk population
- Work in Progress:
 - automatic removal of outliers
 - more realistic distance priors

- It is easy for one Star, but we want to know it for $\mathcal{O}(|\mathsf{Mil})$ stars
- Fit theoretical isochrones to:
 - DECam magnitudes: (u) g r i z Y
 - NIRVVV magnitudes: J, H, Ks

- Estimates:
 - stellar properties (radii, masses, metallicities)
 - distances & extinctions
 - likelihood that a star belongs to bulge or disk population
- Work in Progress:
 - automatic removal of outliers
 - more realistic distance priors

PROJECT TIMELINE

- June-August 2019 Bulge observations
- 2020 😕
- July & August 2021 Bulge observations
- June 2022 ω Cen observations
- November 2022 47 Tuc observations scheduled

- End of year Publish ω Cen results
- 6+ months Publish 47 Tuc results
- Some time in 2023 final Bulge observations
- Spring 2024 Publish final occurrence rates, defend, & graduate