

University of Toronto

Collaborators: Charlie Hughes, Grace Yu, Nora Shipp, Josh Speagle **S5** Collaboration & DES Collaboration

Sept. 12, 2022 DECam at 10 Years Workshop, Tucson

Image Credit: Reidar Hahn

The Unprecedented High Precision Photometry Achieved by DES

- Photometric Uniformity vs. Gaia: 2.15 mmag
- Single-epoch Photometric Repeatability: 2-3 mmag
- Achieved with efforts from many aspects
 - Auxiliary Calibration Systems: DECaLS, aTmCam, GPS Monitor
 - Forward Global Calibration Method (FGCM, Burke, Rykoff+2018) for photometric zeropoint
 - Chromatic Correction and Interstellar Reddening **Fask Force**

DES/DECam's Contribution in Near-Field Cosmology

Discovery of Dwarf Galaxies

Shipp, Drlica-Wagner et al. 2018 (DES Collaboration)

S⁵: Southern Stellar Stream Spectroscopic Survey

-

<u>Since Summer 2018</u>

s5collab.github.io

S⁵: DES+Gaia+AAT

3.9-m Anglo-Australian Telescope (AAT)

Efficient Target Selection w/

AAOmega spectrograph

The Southern Stellar Stream Spectroscopic Survey (S5): Overview, Target Selection, Data Reduction, Validation, and Early Science TSL et al. 2019, arXiv:1907.09481

Since Summer 2018

s5collab.github.io

DES DR1 photometry Gaia DR2 proper motions

S⁵: DES+Gaia+AAT

3.9-m Anglo-Australian Telescope (AAT)

Efficient Target Selection w/

AAOmega spectrograph

The Southern Stellar Stream Spectroscopic Survey (S5): Overview, Target Selection, Data Reduction, Validation, and Early Science TSL et al. 2019, arXiv:1907.09481

Since Summer 2018

s5collab.github.io

DES DR1 photometry Gaia DR2 proper motions

- 80+ AAT nights
- ~700 sq deg.
- Mapped 20 streams
- Collected 70,000+ stellar spectra between 16 < r < 20 mag
- 13 publications and 3 press releases (NYTimes, CBS, etc.)
- First public data release

Photometric metallicity of stars w/ DES photometry

TSL et al. (2019) (S5 Collaboration)

Photometric metallicity of stars w/ DES photometry

TSL et al. (2019)

Photometric metallicity of stars w/ DES photometry

TSL et al. (2019)

Application 1: Determine the Proper Motions of Stellar Streams

Shipp, Li et al. 2019

5

- help detection of proper motion of streams
- largely improve target selection efficiency

Application 2: Predicting Stellar Metallicity w/ DES Photometry + Machine Learning (ML)

Hughes, Li, Speagle, in prep.

Charles Hughes

Training Set: ~ 10,000 stars at 16 < r < 19 Photometry: DES griz Spectroscopic Metallicity: S5

Uncertainty: RMSE in Test Set: 0.25 dex

Metallicity w/ Broadband Photometry

Metallicity w/ Broadband Photometry

ML approach w/ 8-band from Gaia + 2MASS + WISE Uncertainty: 0.19 dex

Fallows & Sanders (2022)

Metallicity w/ Broadband Photometry

ML approach w/ 8-band from Gaia + 2MASS + WISE Uncertainty: 0.19 dex

At least 3 independent groups working on Gaia XP coefficients —> metallicity ! (G<17) Fallows & Sanders (2022)

Metallicity Uncertainty at the faint end

Hughes, Li, Speagle, in prep.

Charles Hughes

[Fe/H] uncertainty < 0.4 dex at r < 21 mag

Metallicity Uncertainty at the faint end

Hughes, Li, Speagle, in prep.

Charles Hughes

[Fe/H] uncertainty < 0.4 dex at r < 21 mag

and Rubin will do 2-3 mag deeper!

Photometric metallicity of stars w/ DES photometry

TSL et al. (2019)

Photometric metallicity of stars w/ DES photometry

TSL et al. (2019) (S5 Collaboration)

Stellar Population — NGC 1261

MS: main sequence **RGB: red-giant branch** BHB: blue horizontal branch RHB: red horizontal branch BS: blue stragglers

> select all blue stars with g-r < 0.1

Stellar Population — NGC 1261

MS: main sequence **RGB: red-giant branch** BHB: blue horizontal branch RHB: red horizontal branch BS: blue stragglers

> select all blue stars with g-r < 0.1

TSL et al. (2019)

DES DR1

TSL et al. (2019) (S5 Collaboration)

DES DR2

TSL et al. (2019) (S5 Collaboration)

BHB/BS Separation w/ Broadband Photometry

Subaru/Hyper-Supreme Cam

Deason+2018

BHB/BS Separation w/ Broadband Photometry

Subaru/Hyper-Supreme Cam

Deason+2018

Fukushima+2019

BHB/BS Separation w/ DES Photometry

 $(g - r)_0$

Grace Yu

BHB/BS Separation w/ DES Photometry

 $(g - r)_0$

Grace Yu

BHB/BS Separation w/ DECam Photometry: DES vs DECaLS

Grace Yu

Yu, Li, Speagle, in prep.

BHB/BS Separation w/ DECam Photometry: DES vs DECaLS

Same stars in DES footprint

Note that DECaLS DR9 is shallower than DES DR2

BHB/BS Separation w/ DECam Photometry

Grace Yu

Yu, Li, Speagle, in prep.

BHB/BS Separation w/ DECam Photometry

Grace Yu

Yu, Li, Speagle, in prep.

The Unprecedented High Precision Photometry Achieved by DES

- Photometric Uniformity vs. Gaia: 2.15 mmag
- Single-epoch Photometric Repeatability: 2-3 mmag
- Achieved with efforts from many aspects
 - Auxiliary Calibration Systems: DECaLS, aTmCam, GPS Monitor
 - Forward Global Calibration Method (FGCM, Burke, Rykoff+2018) for photometric zeropoint
 - Chromatic Correction and Interstellar Reddening **Fask Force**

BHB/BS Separation w/ DECam Photometry

Grace Yu

Yu, Li, Speagle, in prep.

Milky Way Density Profile w/ BHB stars

Yu, Li, Speagle, in prep.

Grace Yu

r=22

- DES provides the unprecedented high precision photometry (~2mmag).
- With DES photometry + S5 metallicity, we show that DES photometry can provide photometric metallicity at a precision of ~0.25 dex.
- The high precision photometry from DES also allows us to separate BHB from BS; the former could be used to map the density profile of the Milky Way.
- The high-precision photometry from DES largely improved the target selection of spectroscopic follow up program on metal-poor giant stars in $\frac{1}{N}$ -0.05 the Milky Way halo.
- Rubin/LSST will be able to reach similar precision and go 2-3 mag deeper!

Summary

