Mapping the Growth of Supermassive Black Holes with DECam

Zhefu Yu
The Ohio State University

Collaborators: Paul Martini, Tamara Davis, Chris Lidman, Umang Malik, Andrew Penton, Robert Sharp, Brad Tucker

Mass of Supermassive Black Holes

 SURVEY- BH mass: a critical parameter for SMBH studies
- Reverberation mapping: most accurate method to measure the BH mass in AGNs beyond the local universe
- AGN broad line variability echoes the continuum variability
- Time lag $\tau \rightarrow$ BLR size $R_{B L R}$
- BH mass: $M_{\mathrm{BH}}=\frac{f c\langle\tau\rangle \Delta \nu^{2}}{G}$

RM Lag measurements

"Industrial scale" RM: motivations

DARK ENERGY SURVEY

- Early RM results: limited sample size and parameter-space coverage
\rightarrow Poorly constrained $\mathrm{R}-\mathrm{L}$ relation for Mg II and C IV (critical for high redshifts)
- "Industrial scale" RM: large and homogeneous sample, long monitoring baseline
(e.g., SDSS RM project, OzDES RM project)
(Early measurements: Peterson et al. 2004 , Kaspi et al. 2007, Bentz et al. 2009, Denney et al. 2010, Barth et al. 2011a,b, Grier et al. 2012, Trevese et al. 2014)

OzDES RM project

- DECam enables one of the leading "industrial scale" RM campaigns
-6-year monitoring of 735 quasars in the DES SN fields
- DES photometry: ~ weekly cadence (~ 120 epochs)
- OzDES spectroscopy: ~ monthly cadence (~ 40 epochs)

Mg II RM: Lag measurements

- 25 lag measurements: significantly increase the number of Mg II lags
- Extending toward higher redshifts and luminosities
redshift (Yu et al. 2021, Yu et al. 2022b)

Mg II RM: R - L relation

- Broadly consistent with the Mg II R-L relation from Homayouni et al. 2020, while shallower than the $\mathrm{H} \beta$ R-L relations
- The intrinsic scatter (~ 0.15 dex) is much smaller than Homayouni et al. 2020 (~ 0.3 dex)
- Enables better single-epoch mass at cosmic noon

$\mathrm{H} \beta$ and C IV RM

DARK ENERGY SURVEY

- C IV lags for 2 quasars at $z=1.9$ and $z=2.6$
- $\mathrm{H} \beta$ lags for 8 quasars

Continuum RM

dark energy SURVEY

- Temperature gradient of the disk: $T \propto R^{-1 / \beta}$
- AGN continuum: multitemperature black-body
- Continuum lag: light travel time within the disk

X-ray lamppost

Shakura and Sunyaev, 1973

Continuum RM with DES

- Photometry from DES standard star fields with ~ daily cadence
- 22 disk size measurements, in general agreement with the standard thin disk model

Continuum RM in LSST DDFs: effect of cadence

- LSST can produce an order of magnitude more disk size measurements
- Simulations: significant increase in the yield from 3-day cadence to 2/1-day

Toward Future RM Campaigns

- Future surveys: LSST, Black Hole Mapper (SDSS-V), TiDES (4MOST), ...
- Simulations for survey design: Long season length is important for lag measurement

Summary

- OzDES RM project: one of the leading "industrial scale" RM project - 735 quasars, 6-year monitoring, ~ weekly photometry and ~ monthly spectroscopy
- One of the largest samples of the Mg II lags and black hole mass:

25 Mg II lags with higher redshift and luminosity

- Best constraints of the Mg II R-L relation to date
- Accretion disk sizes for 22 new objects. Most measurements are consistent with the standard thin disk model
- Simulations for future RM campaigns: higher cadence and long season length are important

