	OzDES
DARK ENERGY	
SURVEY	

Mapping the Growth of Supermassive Black Holes with DECam

Zhefu Yu The Ohio State University

Collaborators: Paul Martini, Tamara Davis, Chris Lidman, Umang Malik, Andrew Penton, Robert Sharp, Brad Tucker

SURVEY

Mass of Supermassive Black Holes

- BH mass: a critical parameter for SMBH studies
- Reverberation mapping: most accurate method to measure the BH mass in AGNs beyond the local universe
- AGN broad line variability echoes the continuum variability
 - Time lag $\tau \rightarrow BLR$ size R_{BLR}

• BH mass:
$$M_{\rm BH} = \frac{fc\langle \tau \rangle \Delta v^2}{G}$$

RM Lag measurements

DARK ENERGY

DARK ENERGY

"Industrial scale" RM: motivations

SURVEY 48 47 (¹]) Lack lag og($\lambda L_{5100}[erg$ 45 measurements from early studies 44 43 42 41 0.5 2.5 15 2.0 0.0 1.0 3.0 Redshift

 Early RM results: limited sample size and parameter-space coverage

 \rightarrow Poorly constrained R – L relation for Mg II and C IV (critical for high redshifts)

 "Industrial scale" RM: large and homogeneous sample, long monitoring baseline

(e.g., SDSS RM project, OzDES RM project)

(Early measurements: Peterson et al. 2004, Kaspi et al. 2007, Bentz et al. 2009, Denney et al. 2010, Barth et al. 2011a,b, Grier et al. 2012, Trevese et al. 2014)

OzDES RM project

- DECam enables one of the leading "industrial scale" RM campaigns
- 6-year monitoring of 735 quasars in the DES SN fields
- DES photometry: ~ weekly cadence (~ 120 epochs)
- OzDES spectroscopy: ~ monthly cadence (~ 40 epochs)

- DES: 6 years, ~ 5000 deg^2
- DES SN fields: insensitively monitored with weekly cadence
- OzDES: spectroscopic survey in DES SN fields

- 25 lag measurements: significantly increase the number of Mg II lags
- Extending toward higher redshifts and luminosities

- **Broadly consistent with the Mg II R-L relation from Homayouni et al. 2020, while shallower than the H\beta R-L relations**
- The intrinsic scatter (~ 0.15 dex) is much smaller than Homayouni et al. 2020 (~ 0.3 dex)
- Enables better single-epoch mass at cosmic noon

• Temperature gradient of the disk: $T \propto R^{-1/\beta}$

 AGN continuum: multitemperature black-body

DARK ENERGY SURVEY

Continuum lag: light travel time within the disk

Continuum RM

Shakura and Sunyaev, 1973

- Photometry from DES standard star fields with ~ daily cadence
- 22 disk size measurements, in general agreement with the standard thin disk model

Continuum RM in LSST DDFs: effect of cadence

11

1-day

2-day 3-day

r band

i band

z band

6

8

- LSST can produce an order of magnitude more disk size measurements
- Simulations: significant increase in the yield from 3-day cadence to 2/1-day

 Simulations for survey design: Long season length is important for lag measurement

OzDES

- OzDES RM project: one of the leading "industrial scale" RM project 735 quasars, 6-year monitoring, ~ weekly photometry and ~ monthly spectroscopy
- One of the largest samples of the Mg II lags and black hole mass:
 25 Mg II lags with higher redshift and luminosity
- Best constraints of the Mg II R L relation to date
- Accretion disk sizes for 22 new objects. Most measurements are consistent with the standard thin disk model
- Simulations for future RM campaigns: higher cadence and long season length are important

