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What can we learn from the compositions of exoplanet
atmospheres?

Track conditions of
planet formation and
evolution
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Figure from Oberg et al. (2011)



Previous measurements of composition and C/O ratio have
been limited by low resolution + low wavelength coverage

Measure broad [ ysT/WFC3: 1.1-1.7 um
absorption band of R~40-100

H,0




Previous measurements of composition and C/O ratio have
been limited by low resolution + low wavelength coverage

Measure broad [ HST/WFC3: 1.1-1.7 um
absorption band of R~40-100

H,0

Measure individual
absorption lines of
HZO, CO, CH4, OH, etc.

IGRINS: 1.5-2.5 um
R~45,000




A high-resolution transit survey to measure transmission spectra
of 11 exoplanets with Gemini-S/IGRINS (R~45,000 from 1.5-2.5 um)

* Covers features of all primary C- WASP-1216"
and O-bearing molecules (e.g., = \WASP-76b
H,O, CO) [ look for chemical =
trends with mass, temperature, 3 ASP17E
and dge Ko WASP-127b *

. : £
* Combine with other data sets = WASP-39b
: : Q P26
(Hubble, Spitzer, optical data)to E O ase-ssb
. . o *DSTuch WASP-80b
get fuller picture of atmospheric & wasp107b
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WASP-76b: ultra-hot Jupiter (Teq=2170 K)

Blackbody-like HST spectrum;
likely due to water

dissociation (Edwards+2020;
Fu+2021; Mansfield+2021)




WASP-76b: ultra-hot Jupiter (Teq=2170 K)

Asymmetric Fe absorption at high resolution;

potential sign of nightside condensation
(Ehrenreich+2020; Kesseli+2021; Wardenier+2021;
Savel+2022)

P
£
a
Q

&

=
S
Q
o

=]
c

2

=
®

=
S
o
o
o

Substellar WASP-76b
point (noon) £

Wavelength (um) .

. -
Blackbody-like HST spectrum; ' @
likely due to water !

dissociation (Edwards+2020;
Fu+2021; Mansfield+2021)




WASP-76b: ultra-hot Jupiter (Teq=2170 K)

Asymmetric Fe absorption at high resolution;

potential sign of nightside condensation
(Ehrenreich+2020; Kesseli+2021; Wardenier+2021;
Savel+2022)
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likely due to water
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Many other species detected at high

resolution (e.g., OH, Landman+2021; Mg, Fe, Na,
etc., Kesseli+2022)




Gemini-S/IGRINS transit observations of WASP-76b

* Single transit observed on 10/29/21; signal-to-noise~200 per AB pair
* Remove orders with median SNR<100, then use principal component

analysis to clean data
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Goal: detect signal of planet as it orbits around star
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Video from Peter Smith



Problem: planetary signal is overwhelmed by star, tellurics, and
instrument throughput
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Solution: use principal component analysis to remove
stationary signals (tellurics, star, and instrument
response)

Basic idea: identify axes along which the
largest amounts of the data lie



Solution: use principal component analysis to remove
stationary signals (tellurics, star, and instrument

response)
Cleaning with PCA

Before PCA

Raw data | ;’ I||II
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Cross-correlation with model template (including H,O,
OH, and CO) to detect the atmosphere of WASP-76b
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Cross-correlation with model template (including H,O,
OH, and CO) to detect the atmosphere of WASP-76b
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Cross-correlation with model template (including H,O,
OH, and CO) to detect the atmosphere of WASP-76b
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Non-detections of several other molecules
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Initial (not finalized!) constraints on the atmospheric
composition of WASP-76b from retrieval

— +1.
log10nH,0 = —4.91%539

« Constraints on CO, H,0, OH
* [C/H]= —0.05%332 |
0g10nco = —3.352333
» [0/H]= —0.30%553 m
logionon = —5.27%58

* Suggests [M/H] = —0.19%532

logionco

(consistent with solar) and
superstellar C/O = 0.9679-03
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Initial (not finalized!) constraints on the atmospheric
composition of WASP-76b from retrieval

« Constraints on CO, H,0, OH

* [C/H]= —0.05%5:%3

» [0/H]= —0.30%3:33

e Suggests [M/H] = —0.191332

(consistent with solar) and
superstellar C/0 = 0.9610:03

* Apparent H,O depletion

compared to equilibrium —
ongoing work to understand Abundance
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Ongoing observations of other planets in survey will
reveal trends in composition

*5/11 targets observed so far VAR Ie

®
WASP-76b

* Survey continuing through July
2023
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Synergies with JWST observations of hot Jupiters

Ground-based: lose continuum, but more lines
Space-based: preserve continuum
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Figure from Brogi & Line (2019)



Synergies with JWST observations of hot Jupiters

Ground-based:
measure wind
speeds to probe
dynamics

Space-based: use
eclipse mapping to
measure
temperature
structure resulting
from winds

Figure from Majeau et al. (2012)
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Conclusions and future work

*H,0, CO, and OH detected in WASP-76b with Gemini-S/IGRINS

* Initial retrieval results indicate metallicity consistent with solar, but
significantly supersolar C/O ratio

* Ongoing work: Non-isothermal T-P profile; varying abundances with
altitude; difference between morning and evening terminators

* First results from an upcoming IGRINS survey of 11 transiting planets

* Exciting opportunities for synergies between Gemini telescopes and
JWST

Questions? P2 meganmansfield@arizona.edu y @cornerof_thesky
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