The quasar luminosity function at z~5 improved by artificial neural network and Bayesian information criterion

Suhyun Shin (SNU)

Advisor : Myungshin Im Co-worker : Yongjung kim

GSM2022

Quasar Luminosity Function (LF)

- Representing the demography depen dent on the luminosity
- A key to investigate the evolution of q uasars (SMBH and host galaxies) acr oss the cosmic time
- Can be used for estimating the contribution of quasar to keeping the IGM ionized

 \rightarrow A lot of studies give efforts to construct quasar LF at various redshifts

Discussion

Intro

Data

Selection

Quasar LF

 \rightarrow The discrepancies between the quasar LFs at high redshift exist in the faint regime

Contamination sources of quasar survey

 The contamination of M-dwarf stars and high-z galaxies makes it difficult to select promising quasar candidates

→ The need for new attempt to separate high-z quasar from other contamination sources
→ Deep learning and △BIC calculation

Intro

known as great solvers to classification problem

Data

- Use criteria in multi-dimensional space
- Enable us to separate objects based on non-linear boundaries
- **Optimize these boundaries** by decreasing a loss
- **Computing time** for DNN selection is much shorter than SED fitting

Selection

Quasar LF

Discussion

→ Efficient to discern quasar-like candidates from M dwarf contamination

→ Using the Deep layer of HSC-SSP (PDR2) : $i_{AB} \sim 26.7$ (5- σ depth), Area ~ 26 deg² → make our quasar LF ~ 1.0 mag deeper than previous quasar LFs

Intro	Data	Selection	Quasar LF	Discussion

Quasar candidates selection

Pre-selection

- \rightarrow Reliable photometry
- → **Point source selection-** exclude extended local galaxies
- \rightarrow Red objects

Deep learning (DL)

A : Activation function, ReLU

→ Classification: i-band-detected Point sources (nqso) vs quasars at 4.5 < z < 5.5 (qso)
→ DL can make criteria in multi-dimensional space (g-r, r-i, i-NB816, NB816-z, z-NB921, NB921-y)

IntroDataSelectionQuasar LFDiscussion

Δ **BIC calculation**

→ Using ∆BIC calculation, **exclude star-like candidates**

IntroDataSelectionQuasar LFDiscussion

The quasar LF

- Built QLF reaching $M_{1450} = -22.0$ mag without multiwavelength data
- **Derived** $\alpha = -1.61^{+0.21}_{-0.19}$ is consistent with the best-fit α in Niida+20 and Kim+20 within 1- σ level.
- Quasars did not significantly contribute the ionizing background.

• Clear difference of the number density at $M_{1450} > -23.5$ between Ono+18 (LBGs at z~5) and this work, implying lower contamination rate of high-z galaxies.

→How to check the efficiency of our quasar selection process ? *Contamination & Recovery*

Intro

Galaxy contamination

Using spectroscopically confirmed galaxies and AGNs at z = 4-7 from HSC-SSP (Ono+18)

<u>All observed fluxes of QSOs/LBGs are normalized to their i-band fluxes</u>

- Niida+20 Color selection \rightarrow 3/8 (4.0 < z < 6.0)
- Deep learning & Bayesian statistics $\rightarrow 1/8$ (4.0 < z < 6.0)

Quasar recovery of our selection

Data

Intro

Selection

Quasar LF

Discussion

→ Recover known quasars (5/6) and promising candidates (2/3) in the survey

 \rightarrow Without multiwavelength data, we could miss quasars (2/9 ~ 22%)

Confusion matrices for two methods

<u>Using quasar models at z=4.5 – 5.5 as a test set</u>

Deep learning

Intro

 \rightarrow Color selection is only effective for finding quasars at z=4.7 – 5.1

→ Low FPR (~ 0.5%) & Higher TPR (~ 99.7% vs. 31.3 %) of Deep learning

Summary

Shin, Im & Kim, submitted

- Searching for faint quasars with $-26 \leq M_{1450} \leq -22.0$ (i ~ 24.0 mag) at z ~ 5 over an area of 16 deg^2 using the optical imaging data only
- Adopting deep learning technique to efficiently select quasar candidates from non-quasar objects
- Performing SED fitting using quasar and star SED models
- Comparing the fitting results via Bayesian information criterion (BIC) calculation to select quasar-like objects
- Building the quasar LF with 5 confirmed quasars and 30 promising candidates and obtaining $\alpha = -1.61^{+0.21}_{-0.19}$
- Our selection can minimize galaxy contamination and also maximize the quasar recovery compared to conventional color-selection.