

IGRINS for Gemini Telescope Heevoung Oh & IGRINS-2 Team @ KASI and Gemini GSM 2022, July 25-29, 2022

THE PARTY PROPERTY PROVIDED

Gemini Observatory/AURA/NOIRLab

Introduction

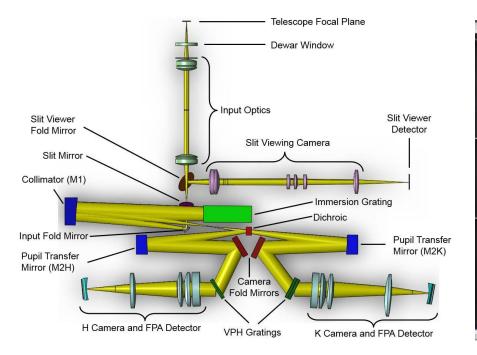
 The IGRINS-2 project was initiated as part of the full participant agreement between KASI and Gemini Observatory in July 2018. Specifically, KASI will provide Gemini Observatory with an instrument very similar to the original IGRINS.

Gemini's international headquarters @ Hilo

Gemini North

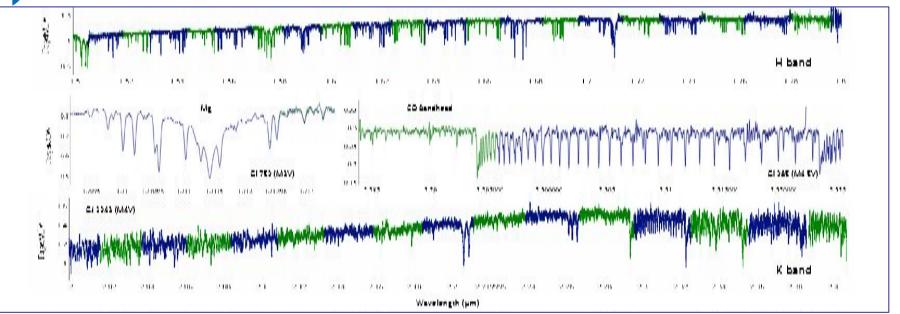
Milestone	Date
Kick-off meeting	2020-03-30
Final decision on optical design options	2020-05-30
Critical Design Review (CDR) for upgrade	2020-10-30
Production Readiness Review (PRR)	2021-03-30
Slit-viewing camera lab image acquisition (start)	2022-03-30
Spectrograph integration and test in lab (start)	2022-09-30
Shipping instrument from KASI to Gemini	2023-05-30
Commissioning Readiness Review (CRR)	2023-06-30
Telescope Commissioning	2023-08-30
Operation by Gemini	2023-09-30

Major Science Requirement

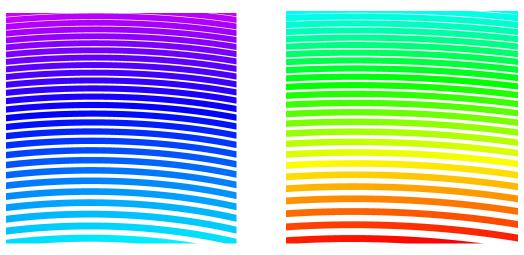


Feature	Requirement
	1.49-2.46 μm
	5" (5.5" order spacing)
	3 pixels at 40,000
	0.1" on the 8.1-m
	50,000
	21,800
	36,000 (32,000)
	<10%
	<0.25% of main line
	0.25% over R/20
	<0.01 e/s
	<2.5%
	<0.01 e/s
	1 km/s (1/2 pixel)
	0.23

Optical Design



Optical bench Assembly (Original IGRINS)

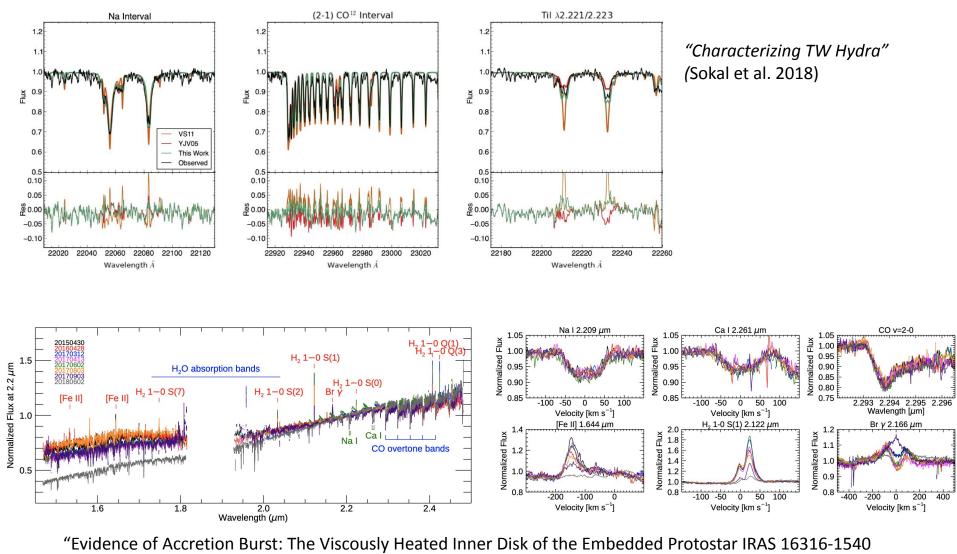

- Optical Design
- Immersion grating
- VPH gratings
- H2RG detectors

Spectral Grasp of IGRINS

Dr. Jae-Joon Lee (KASI) - https://github.com/igrins/plp

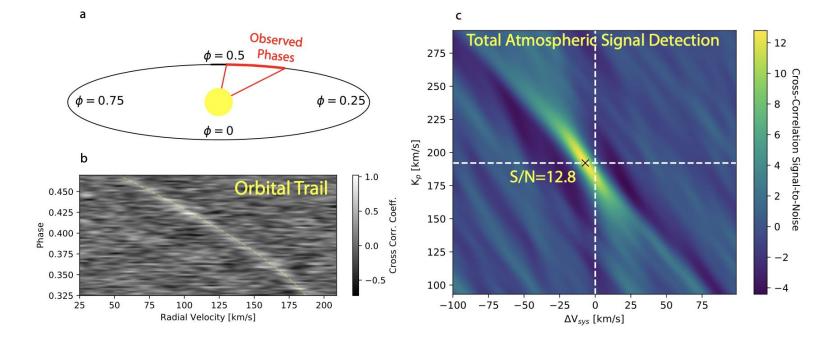
Single shot covers whole H & K bands 1.49-2.46 μm

GSM 2022 July 2022 KASI & Gemini Observatory


- **I** NIR, high-resolution spectroscopy with high sensitivity.
- Young Steller Objects (YSOs) Evolution
 - Fundamental stellar properties of T_{eff} , log g, B field
 - < 10 km/s resolved photospheric lines in the majority of YSOs
 - CO, Na, Mg, Ti, Ca, Al, etc.
- YSO Disks
 - CO from inner disk, H₂O, accretion features (Br_gamma)
- Stellar Population and Chemical Evolution
 - Metallicity from various species, carbon to oxygen ratio of metal poor star
- RV Studies
 - Binaries, Brown Dwarf, Yong Planet with ~1 km/s RV precision
- Interstellar Medium (PNe, Supernova Remnants, PDR)
 - Ro-vibrational transitions of H₂ in the H and K bands
 - UV-pumping, shocks with $H_2 at 2.12 \mu m$, [Fe II] at 1.644 μm
- Galactic Center
- Solar System Bodies

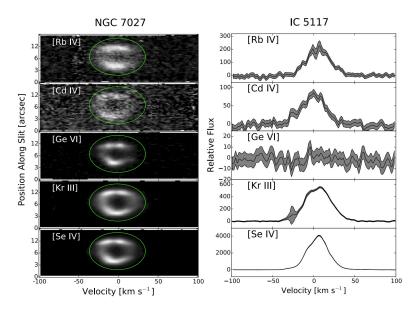
IGRINS Science Example

Young Stellar Objects

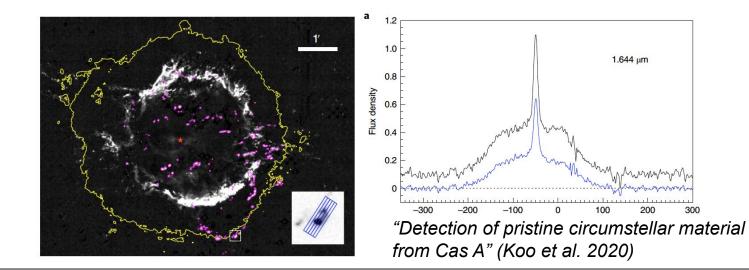


(Yoon et al. 2021)

Exoplanet



"A Precise Carbon and Oxygen Abundance Determination in a Hot Jupiter Atmosphere" Line et al. (2021, Nature)



ISM Studies

"Discovery of Rubidium, Cadmium, and Germanium Emission Lines Planetary Nebulae" (Sterling et al. 2016)

July 2022 GSM 2022 KASI & Gemini Observatory *

IGRINS-2 Development Status

KASI Instrument Team

Key members

- Project Manager: Hwihyun Kim (GS)
- Systems Engineering: Brian Chinn (GS)
- Engineering support: John White (GN), Eduardo Tapia (GN)
- Software Engineering: Francisco Ramos (GS), Ignacio Arriagada (GS)
- Science Operation Support: Pablo Prado (GS), Hyewon Suh (GN), Jennifer Miller (GN)

Advisory members

- Project Sponsor/Program Science support: Ruben Diaz (GS)
- Telescope Scientist: Thomas Hayward (GN)

- The instrument specs remain the same
- Reasons for changes
 - It's been 10 year since IGRINS was developed, some products are discontinued
 - To upgrade (within the given schedule)
- Major Change and Upgrade
 - Optics: Slit-view FoV upgrade
 - IGRINS SVC field of view is incomplete (~60%) circle
 - IGRINS-2 will have circular FoV
 - Mechanics: Light tightening
 - One-body radiation shield
 - Connectors, cooler assembly
 - Electronics: MACIE detector controller
 - JADE2, the interface board for the original IGRINS, has been discontinued by Teledyne.
 - MACIE is the new interface board for IGRINS-2

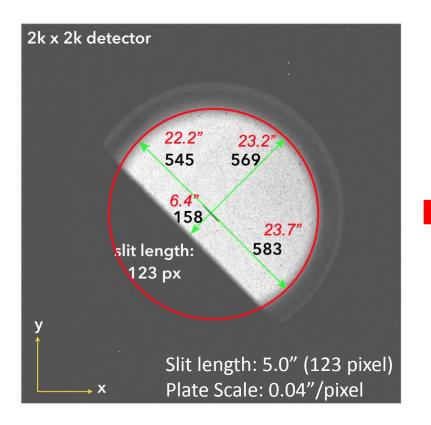
κΛ

Summary of Design Change/Upgrade

	#	Task Title	Purpose/Reason	IGRINS	IGRINS-2
Optical Design	OP-01	Input fold mirror position	To improve SVC FoV	_	Relative 3 mm movement toward H & K spectrograph
	OP-02	Position of M1 collimator, immersion grating, and all following elements	To improve SVC FoV		Relative movement followed by change of input fold mirror
ļ	ME-01	Optical bench flexure upgrade	To improve instrument flexure		Re-optimize the lightweight pattern of optical bench
	ME-02	Radiation shield upgrade	Light tightening	integration of 5 separate plate	Single-body
		Shield-bench coupling upgrade	Light tightening	stair shape	Tongue and groove
	IVIE-04	Interface between cooler assembly and bench	Light tightening	-	Bellows
Mechanical Design		Connector and cable upgrade	Light tightening	- wire for temp. sensor - flex cables for detector	Hermetic connector
	ME-07		Result of optics change	-	 Fix M1 collimator position, and making relative movement on input optics, slit mirror, SV fold mirror, SVC, and input fold mirror Design updates for slit mirror and slit mirror mount
		· · · ·	Result of optics change		Tel. mount and Dewar design update to compensate shift of IO toward telescope focus

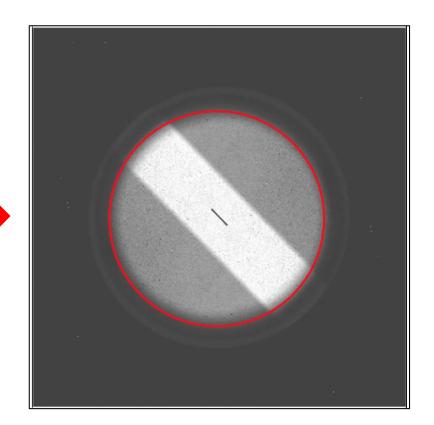
κΛ

Summary of Design Change/Upgrade



	#	Task Title	Purpose/Reason	IGRINS	IGRINS-2
		Stability test of interface between Sidecar & DCC	Jade2 is discontinued, even SAM	Jade2 (USB2.0)	MACIE (GbE)
	EL-02	Detector Control Computer (DCC)	upgrade	Windows Socket Server	Linux or Windows (OS for running socket server)
	EL-03	Instrument Control Computer (ICC)	to be Gemini facility inst.	iMac	Linux based Computer (Gemini) or iMac *Python code Porting or nothing
Electronics	EL-04	Temperature Sensor change	to simplify concept, more heritage	Diode & Cernox	PT100
			to reduce noise and vibration	helix external power supply (one to two phase)	3 to 2 phase, we will make new power supply box
	EL-06			top of electronics enclosure	bottom of the electronics enclosure
	EL-07	Vacuum Gauge upgrade	Innorade	Pfeiffer (Sensor, remote controller)	MKS 972B (controller on the sensor) *10^-7 Torr to Atmosphere
	SO-01	Detector control software		teledyne provided Jade 2 software	MACIE software
Calibration			to minimize/simplify design by disabling unused func.	-	Replace lamp selector module with a single beam splitter
			change of Dewar dimension due to new radiation shield design		reduce the distance between cal focus and bottom plate of cal housing by 8mm
Software	SO-02	Observing software	to be Gemini facility inst.	independent software	Upgrade to be compatible with GIAPI
	SO-03	Pipeline	to be Gemini facility inst.	independent code	Upgrade to be adopted to DRAGONS

Original IGRINS:

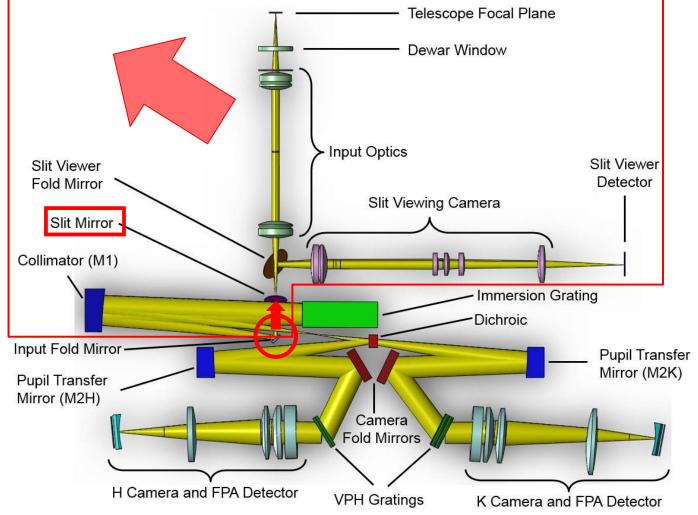

With current optical & mechanical design, IGRINS SVC field of view is incomplete (~60%) circle in order to secure science beam

IGRINS-2:

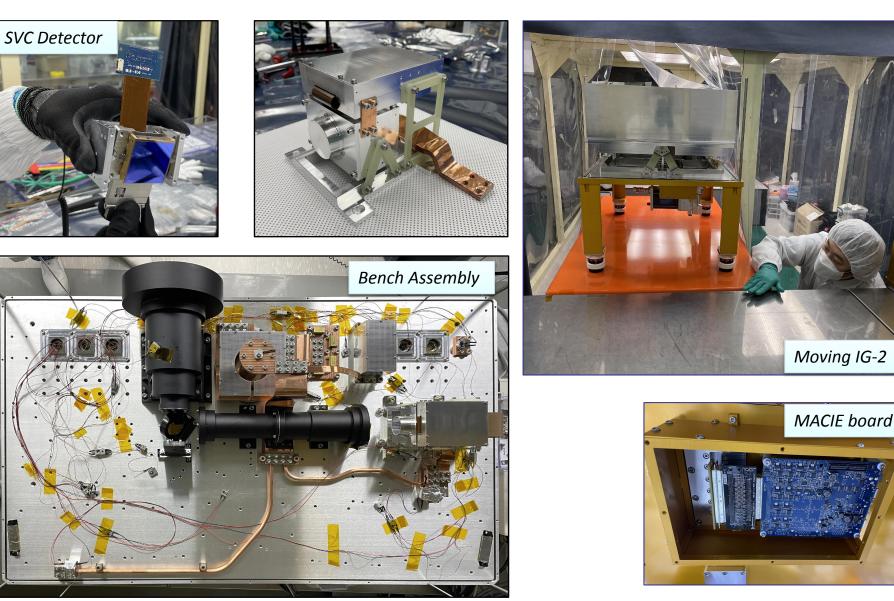
IGRINS-2 with a whole circular field


- To achieve better target acquisition & guiding
- To better utilize detector area

GSM 2022 🔹 July 2022 🔹 KASI & Gemini Observatory


GEMIN

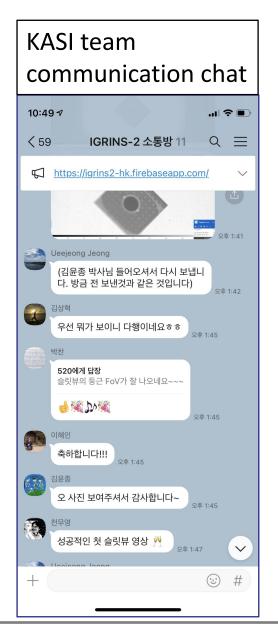
GSM 2022 July 2022 KASI & Gemini Observatory



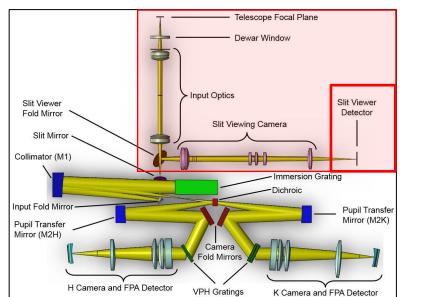
 Solution option is applied by changing the relative physical location of IO and SVC in the mechanical part

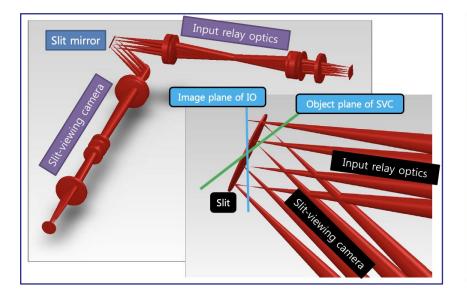
KASI Lab Activity (1/3)

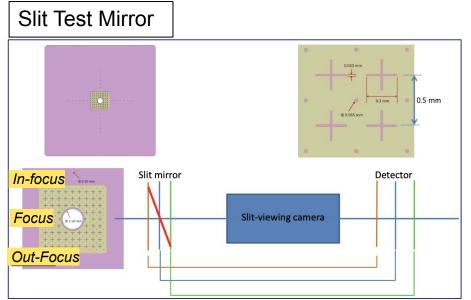
KASI Lab Activity (2/3)

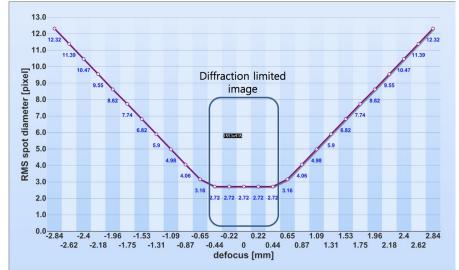


KASI Lab Activity (3/3)

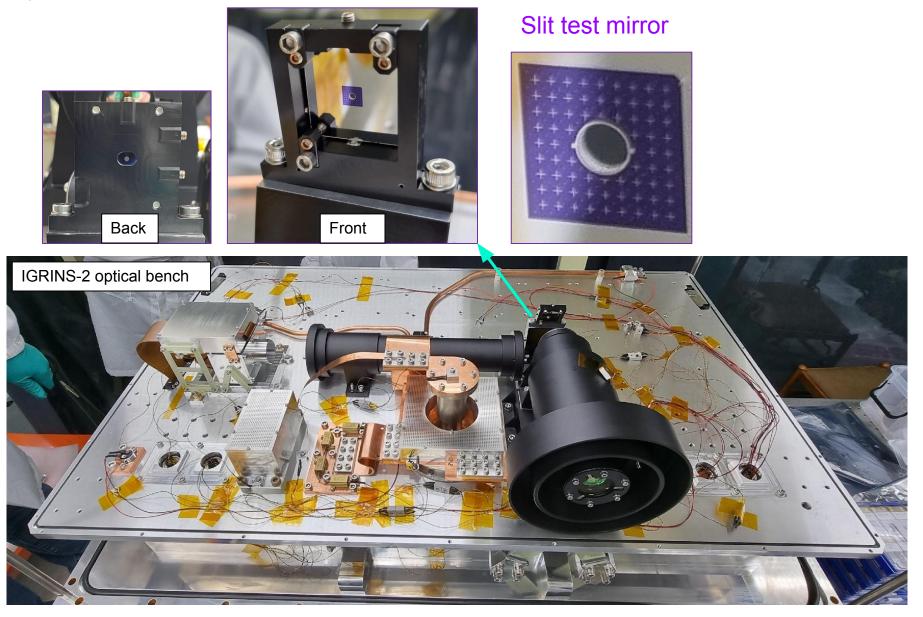




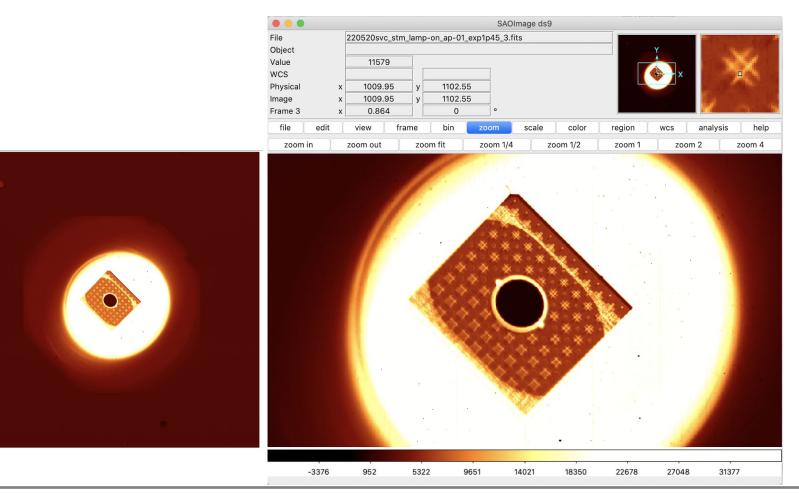


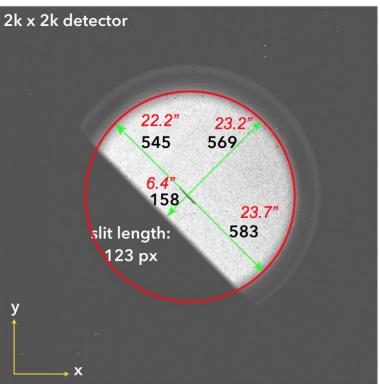


Alignment of SVC Detector: Method

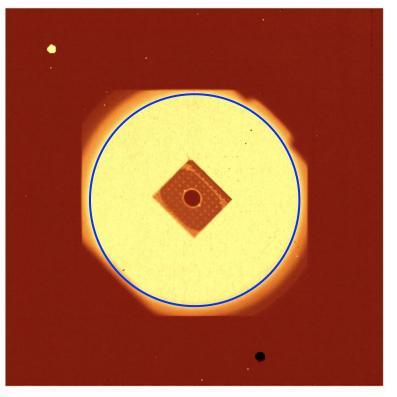


GSM 2022 July 2022 KASI & Gemini Observatory

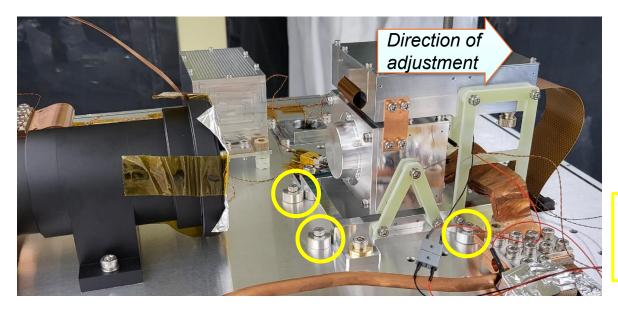

Alignment of SVC Detector: Setup


Alignment of SVC Detector: First SVC Image

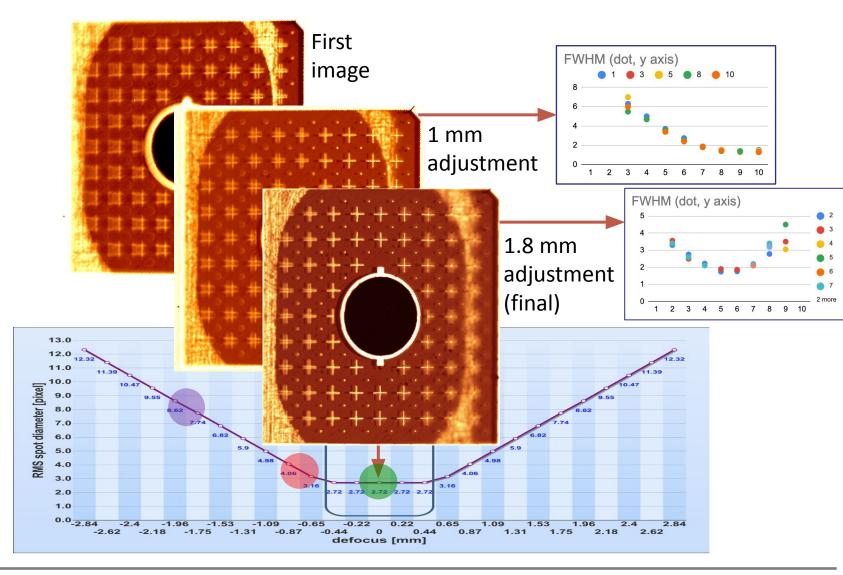
- In May 2022, we got first SVC image of IGRINS-2!
 - *@* operating temperature including detector and bench
 - Minimum exposure (1.45s) with fowler mode
 - 20W THL source (<5% input aperture)



• Circular shape of the SVC field is successfully confirmed.

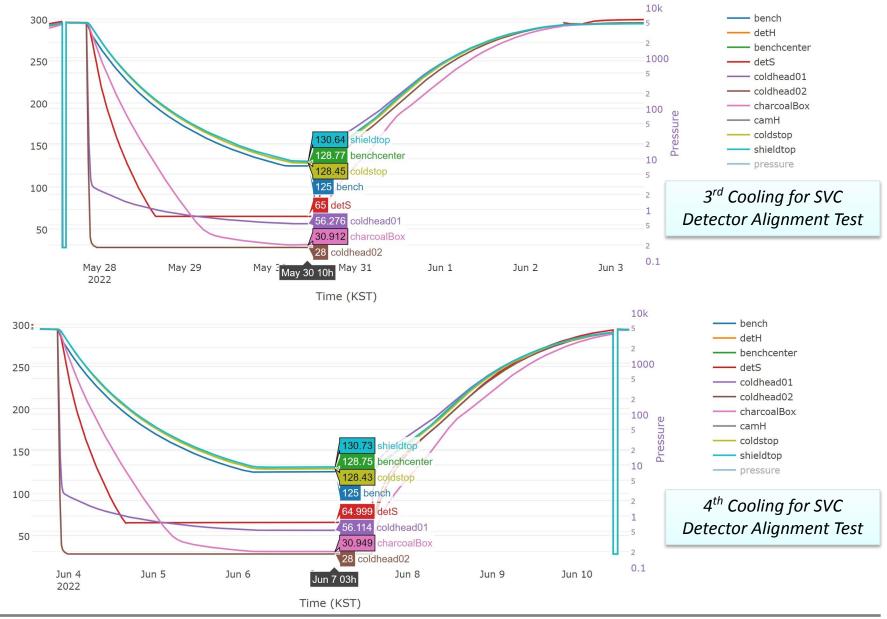

IGRINS-2

MGEMINIM


- The direction of adjustment is the direction that **moves the detector away from the slit mirror**.
- Adjustment at each cooling cycles: 0 mm
 1 mm
 1.7 mm
 1.8 mm (final value)

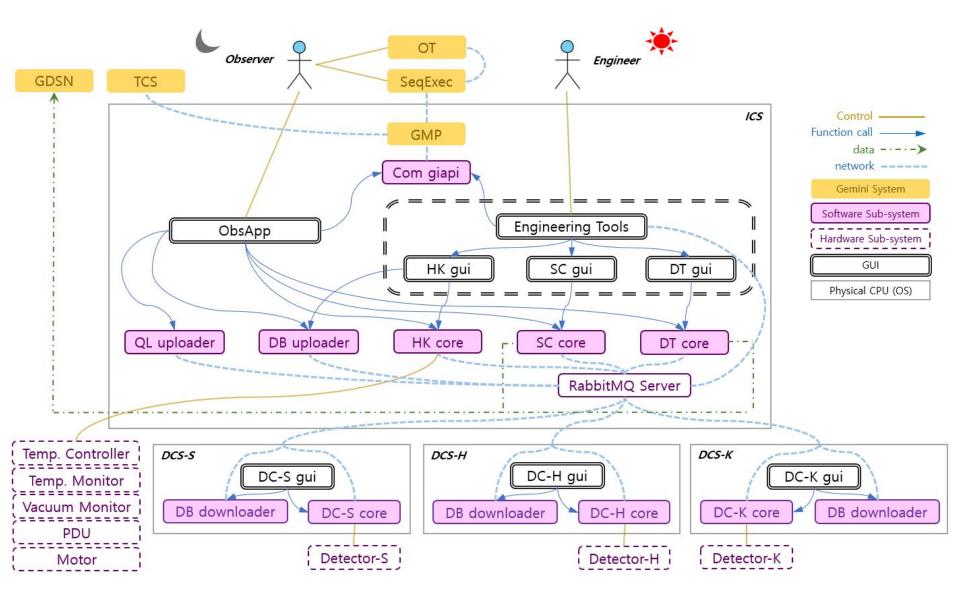
Detector mount bumpers allowing focus adjustment

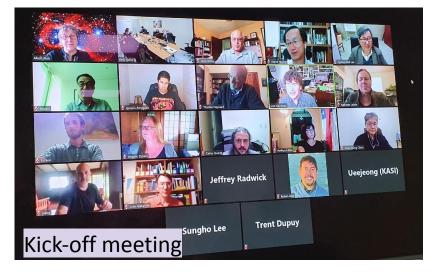
• Image measurement to find the value for the final adjustment.



GSM 2022 🔹 July 2022 🔹 KASI & Gemini Observatory

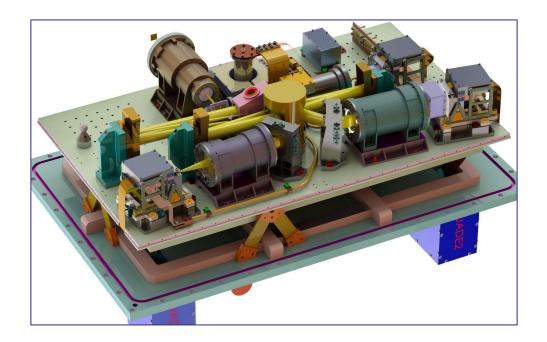
Cooling Test




Software Development

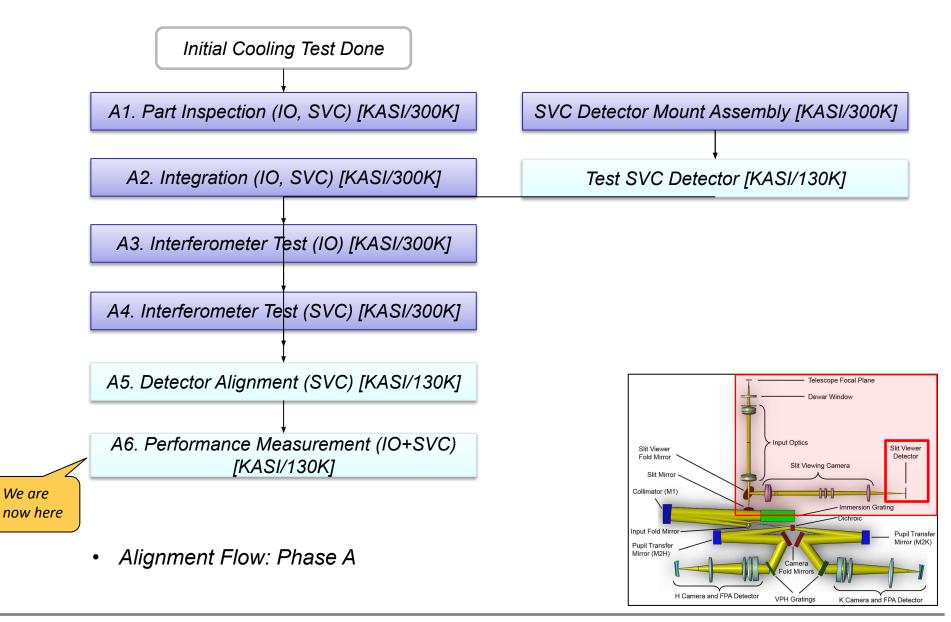
Reviews and Meetings: Virtual to Real

The team finally met in person at SPIE!

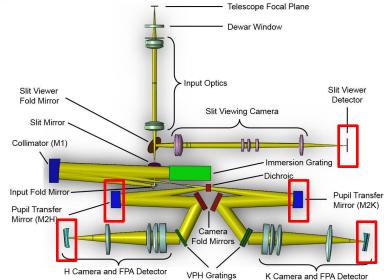


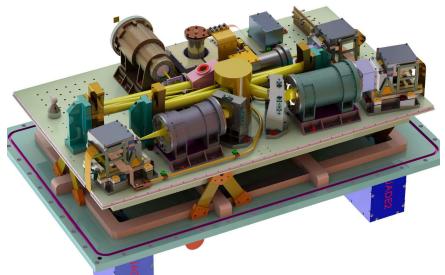
- We have about a year before shipping
 - We are now on schedule!
 - We are preparing to proceed to AIT Phase B (spectrograph camera alignment).
 - Documentations, test report
- Detector Procurement
 - Three detectors: SVC, H, and K detectors
 - SVC detector, and K-detector is installed on IGRINS-2
 - Another science grade will be delivered in Jan. 2023
- More Face-to-face interaction
 - Few Gemini members will visit KASI after GSM 2022
 - Possible visit of Gemini team in October 2022

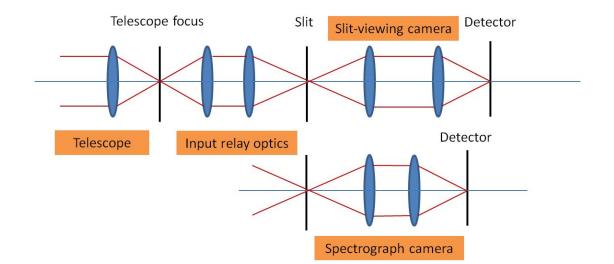
Thank you!



Backup Slides

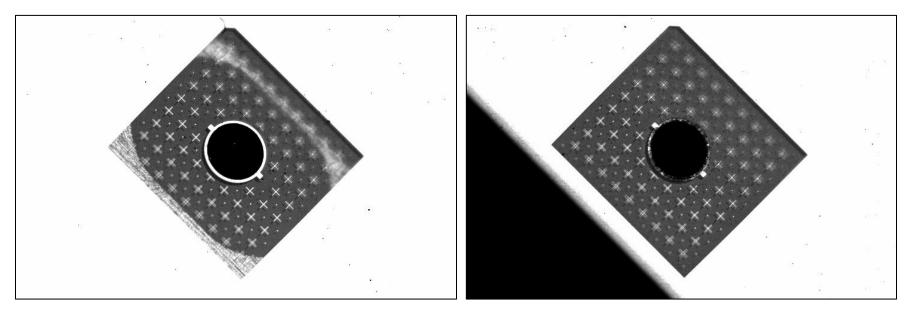

GSM 2022 July 2022 KASI & Gemini Observatory

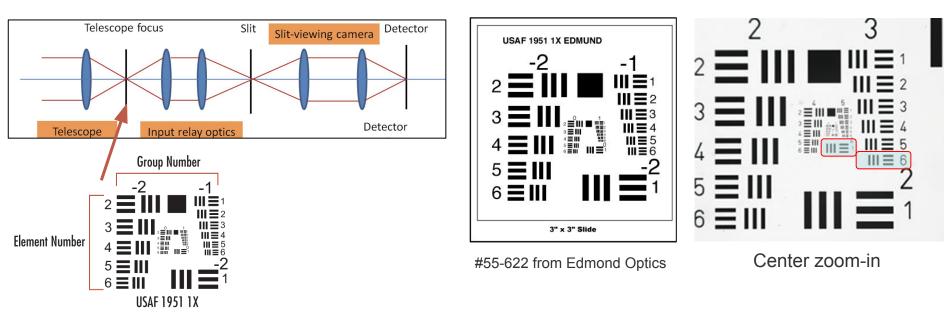

35 /31


Alignment Concept

Fabrication Type	Component	Mount requirement
Compensators	 Pupil transfer mirror Slit-viewing camera detector H-band camera detector K-band camera detector 	Parts that provide position adjustments.
As-built performance	 Input relay optics Slit-viewing camera Slit mirror, Fold mirrors Dichroic mirror Collimating mirror H-band camera K-band camera 	No need position adjustment, should perform as built.
"Impossible" parts	Immersion gratingH-band VPHGK-band VPHG	Parts requiring characterization and adjustment before installation.

- Two types of camera systems: slit-view camera & spectrograph camera
- The focus of spectrograph will reply on the slit-view camera during the Observation
- □ **Phase A.** Align slit-view camera first
- □ **Phase B.** Sync the focus of spectrograph cameras with slit-view camera

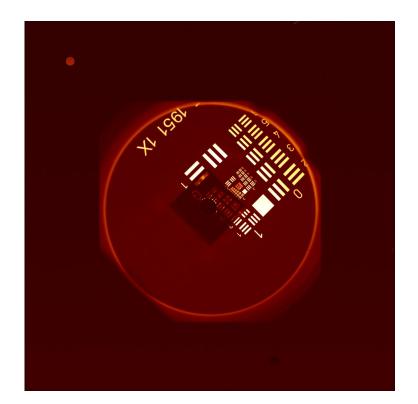

GEM


IGRINS-2

Original IGRINS

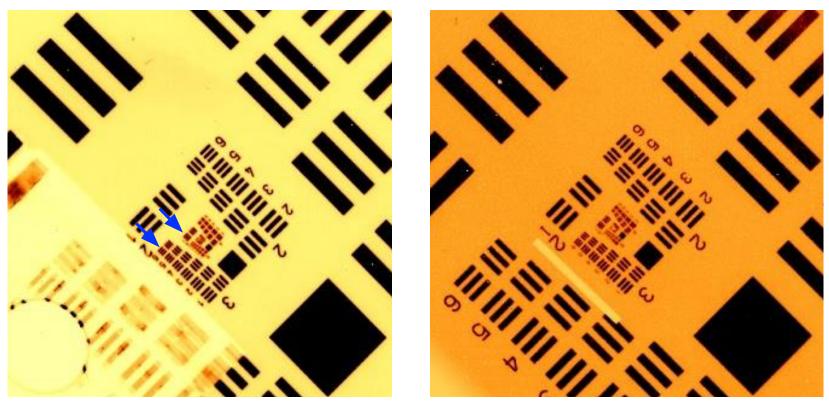
• The image of the slit-test mirror taken with "aligned" SVC detector -- IGRINS-2 and the original IGRINS.

SVC performance: Test method using USAF ta



- Requirement: RMS spot diameter of SVC focus ~48 micron
- Expected resolution at SVC focus: ~20.8 lp/mm
- Magnification factor from Tel. focus to SVC detector: 0.705
- Expected [lp/mm] object to be resolved at the location of Tel focus (=USAF target in Cal box): 14.7 lp/mm
- USAF element we want to resolve is:
 - Group number=3, Element=6: 14.3 lp/mm (required)
 - Group number=4, Element=1: 16.0 lp/mm (over spec)

GSM 2022 July 2022 KASI & Gemini Observatory


- "Focused" USAF target images by IGRINS-2 SVC.
- The USAF target is imaged at two different area of the SVC field. *Central area of the field is shown dark due to the slit-test mirror feature.

SVC performance: USAF target image

IGRINS-2

Original IGRINS

- The part pointed by the arrows are the goal elements.
- The imaging performance of the IGRINS-2 SVC is comparable to that of the original IGRINS.
- Image quality will be further analyzed.

Status of Lens Procurement

Part List		Material	Price	Quantity	2021	2022	
Input Optics	Warm Window	ZnSe	\$3,554	1	0	1	
	Cold Window	Sapphire	\$1,946	1	0	1	
	L1	S-FTM16	\$2,031	1	0	1	
	L2	CaF2	\$2,369	1	0	1	
	L3	CaF2	\$2,200	1	0	1	
	L4	S-FTM16	\$1,862	1	0	1	
SVC	L1	S-FTM16	\$2,877	1	0	1	
	L4	S-FTM16	\$2,369	1	0	1	
	Ks-Filter	Infrasil-301	\$16,923	1	0	1	Telescope Focal Plane
	Slit Viewer Fold Mirror	Zerodur	\$3,215	1	0	1	Dewar Window
H-Camera	H1	CaF2	\$4,315	2	1	1	Slit Viewer - Input Optics Slit View
	H3	Infrasil-301	\$4,062	2	1	1	Fold Mirror Detect Slit Viewing Camera
	H4	Infrasil-301	\$4,400	2	1	1	Slit Mirror
	FF-H	Infrasil-301	\$21,154	1	0	1	Collimator (M1)
	Pupil Transfer Mirror M2H	Al6061-T6	\$33,846	1	0	1	Dichroic
	Camera Fold Mirror H	Zerodur	\$2,877	1	0	1	Input Fold Mirror Pupil Pupil Transfer Pupil
							Mirror (M2H)
K-Camera	K1	CaF2	\$4,400	2	1	1	Fold Mirrors
	K3	Infrasil-301	\$4,231	2	1	1	H Camera and FPA Detector VPH Gratings K Camera and FPA Dete
	K4	Infrasil-301	\$5,077	2	1	1	
	FF-K	Infrasil-301	\$21,154	2	1	1	
	Pupil Transfer Mirror M2K	Al6061-T6	\$33,846	1	0	1	
	Camera Fold Mirror K	Zerodur	\$2,877	1	0	1	
H*K Common Part	Input Fold Mirror	Zerodur	\$2,538	1	0	1	
	Collimator M1	Al6061-T6	\$33,846	1	0	1	
	Dichroic	Infrasil-301	\$16,923	2	1	1	
Calibration Optics	L1	S-FTM16	\$3,046	1	0	1	

- The lens maker company has shipped those lenses made last year.
- The company is manufacturing lenses list in 2022.
- All lenses in 2022 are spare part. Lead time does not affect the final schedule.

4. Mechanical System

Sanghyuk Kim

к

Mechanical Parts Procurement Status

Item	Price (USD)	Delivery	Status
Test Dewar Assembly	55,000	2021.07	Done
Vacuum Chamber	35,000	2021.09	Done
Input Optics Assembly	25,000	2021.11	Done
Slit Viewing Camera Assembly	17,000	2021.11	Done
Optical Bench Assembly	30,000	2021.11	Done
Radiation Shield Assembly	15,000	2021.11	Done
Cooler Assembly	15,000	2021.11	Done
Slit Mirror and Slit Fold Mirror Assemblies	8,000	2021.11	Done
SVC Detector Mount prototype	13,000	2021.11	Done
2021 Sub-total	213,000		Calculated as 1USD = 1,150KRW
H&K Camera Assemblies	54,000	2022.07	Manufacturing in progress
H&K and SVC Detector Mount Assemblies	70,000	2022.04	Done
Mirror Mounts (Off-axis, dichroic, fold)	45,000	2022.07	Manufacturing in progress
Grating Mount Assemblies	35,000	2022.08	Manufacturing in progress
2022 Sub-total	204,000		Calculated as 1USD = 1,150KRW
Telescope Mount Assembly	13,000	2023.02	Final design in progress
Total	430,	000	

- □ The procurement of the mechanical part is on schedule.
- In April, the cooling test without the opto-mechanical components was finished, and after that, we completed the integration of the optomechanical components for the SVC alignment test.
- □ The SVC detector alignment started at the end of April.
- We are working on assembling H and K detector mounts, and they will be installed on the optical bench in June.
 - H-detector mount: with Sci. grade H2RG
 - K-detector mount: detector mount only
- □ The telescope mount design will be updated in accordance with the design change of the ISS plate and the BWA.

5. Electronics System

Mooyoung Chun

Procurement of H2RG detector – Eng-A & 1st Science Grade FPA arrived, 2nd SG FPA on Jan. 2023

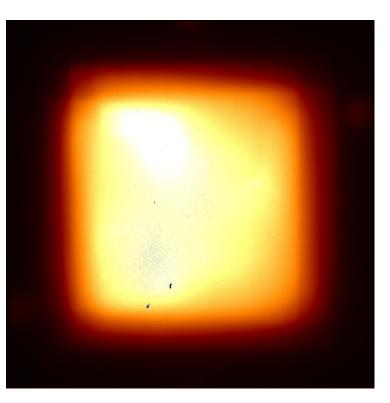
Tunning of H2RG detector – Course tunning of 1st Sci. grade & Slit Viewer is done. See next slides

Waiting for delivery

- Lakeshore Temperature controller 335 (Aug.) To make a shorter cool-down time
 - IEEE488 to RS232 converter (Aug.) For interface of LS temp. controller 335
- Lantronix Device Server EDS3008PR (June) To compare how often the communication error occurs, EDS8PR(current one) and EDS3008PR

Ready to order

- Temp. Controlled(TC) Rack (Aug.) When BWA design is fixed, TC rack will be ordered.
- Patch panels for TC rack (Aug.) All connectors which line go to outside of RC rack are located at patch panel. Design of patch panels are finished, but we will order them with TC rack.

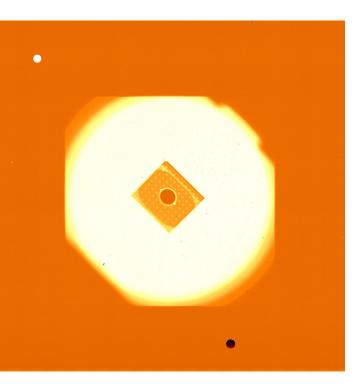


INITIAL TUNING RESULT

- Science A grade detector (#21662)
- Reference level ~ 8,000 ADU
- Enhanced clocking / global reset

a single CDS image (max. ~5,000 ADU)

Bias	Voltage	Hex Reg Addr	Hex Reg Value
Vreset	0.2502 V	6000	804a
Dsub	0.587 V	6002	80e0
VBiasGate	1.8645 V	6004	b520
VrefMain	1.2176 V	602c	81b0



INITIAL TUNING RESULT

- Engineering A grade detector (SVC)
- Reference level ~ 8,000 ADU
- Enhanced clocking / row-by-row reset

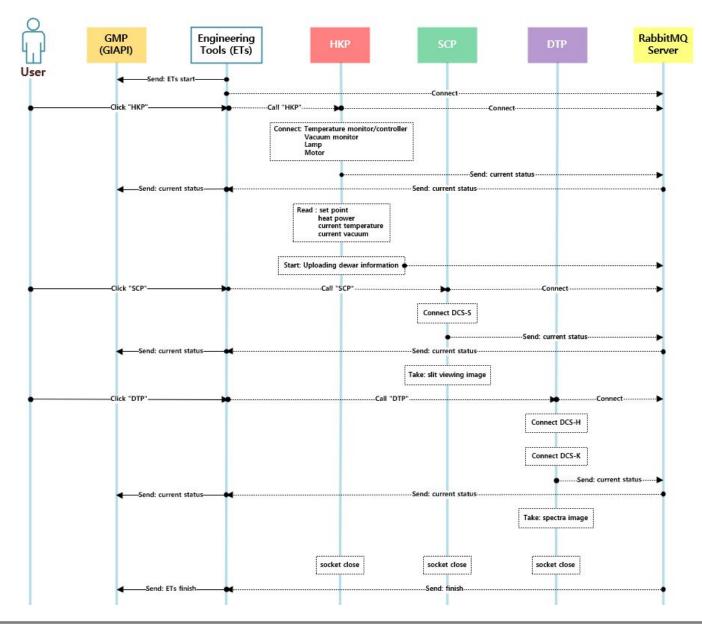
a single CDS image (max. ~1,300 ADU)

Bias	Voltage	Hex Reg Addr	Hex Reg Value
Vreset	0.2502 V	6000	804a
Dsub	0.7154 V	6002	8120
VBiasGat e	1.8645 V	6004	b520
VrefMain	1.1496 V	602c	820a

Observing Software

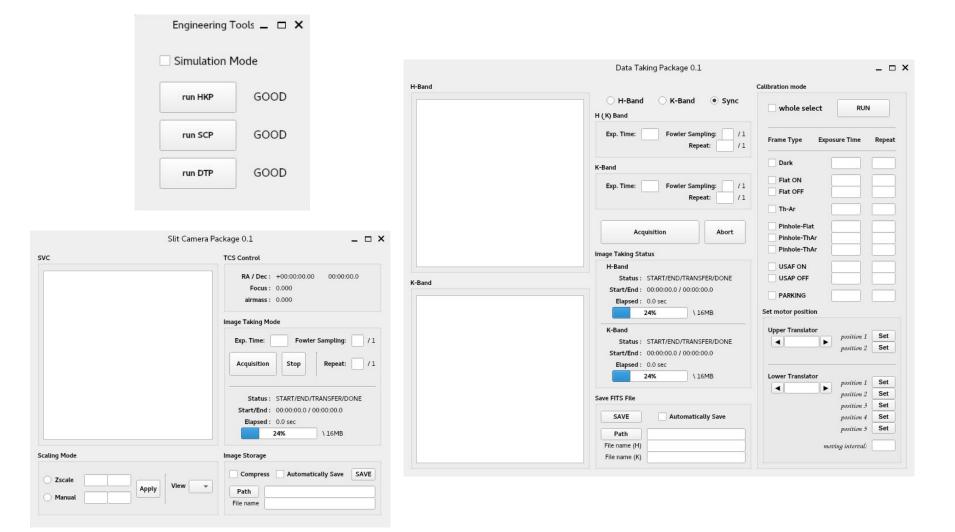
Hye-In Lee

- 1. Development Plan
- 2. Design
- 3. Test & Development
- 4. Summary



1. Development Plan

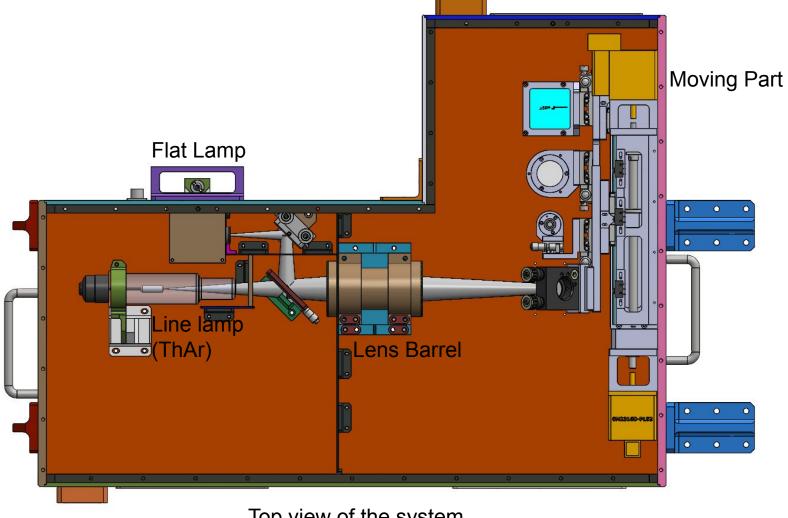
period	Meeting (GIAPI & DRAGONS)	Design	Test & Development
2022.04		 Observing mode & Engineering mode Header for DCS 	 [D] DCS - cli, core [D] HKP – upload HKP db for web-app [T] HKP - communication test
2022.05	 DRAGONS meeting – FITS structure (1 header / expanded S, H, K images) Control software meeting – ObsApp 		 [D] DCS – download HKP db for header [D] DCS – include HKP db in header [T] HKP – communication test
2022.06	 Control software meeting – ObsApp and Engineering Tools 	 Engineering Tools, HKP, SCP, DTP – GUI, architecture HKP, SCP, DTP – operation scenario 	 [T] HKP – communication test [D] DCS – cli, core
2022.07		 Engineering Tools – function design 	 [T] HKP – communication test [D] DCS – GUI [D] ICS - RabbitMQ related coding
	Discussion - Communication		 [T] HKP – communication test [D] DCS – GUI [D] SCP, DTP – cli, core
2022.08 2022.09	information, ObsApp GUI	GIAPI review	 [T] DCS – communication test / sub-system test [D] HKP – modify HKP db for web-app
			 [D] HKP – Modify HKP db for web-app [D] SCP, DTP – GUI [D] ICS - related coding with simulation
			* [D] development / [T] test


2. Design - Scenario for Engineering Tools GEMINI

2. Design - GUI

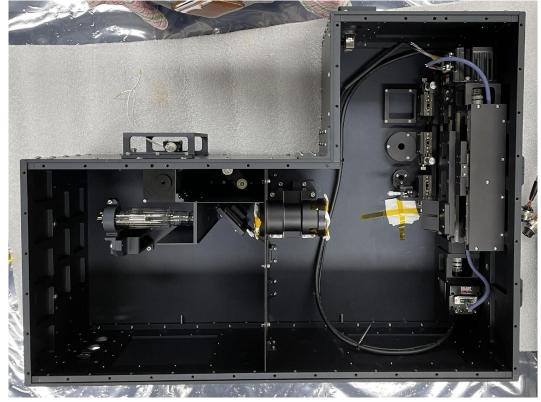
7. Calibration system

Heeyoung Oh & IGRINS Team



Schedule after PRR

March 2021 PRR Meeting April-May 2021 Order of commercial parts Prepare for procurement of fabrication -70% of commercial parts has been delivered to KASI Documentation for the fabrication is being done / done for: 0 Non-moving part (done) Documentation for the fabrication is being done / done for: 0 Non-moving part (done) June 2021-August 2021 Inspection of commercial parts 100% of commercial parts has been delivered. Start procurement of fabrication Start procurement of fabricated part Alignment telescope Lab space Non-moving part (done) September 2021 Inspection of fabricated part Prepare assembly and test Alignment telescope Lab space All of fabricated parts has been delivered and inspected. October-Dacemt er 2021 Assembly Alignment Moving part test Electronics connection for motors Assembly done January 2022-March 2022 Prepare SVC test Dewar assembly initial test of dewar vacuum and cooling test Ready for SVC test March 2022 Use for SVC test IOS vC assembly and test SVC test started	Month	Items	Check List	Status update
April-May 2021 April-May 2021 Order of commercial parts Prepare for procurement of fabricationInspection of commercial partsStart procurement of fabrication Inspection of fabricated partAlignment telescopeAlignment telescopeMoving part test doneInitial test of dewar vacuum and coolingInitial alignment done 2022-March 2022Prepare SVC test Dewar assemblyInitial test of dewar vacuum and coolingIO, SVC assembly and test	March 2021	PRR Meeting		
June 2021-August 2021Inspection of commercial parts Start procurement of fabricationdelivered.Start procurement of fabricationAmong 3 contracts for fabrication • Non-moving part (done) • Moving part (under delivery) • Lens barrel (under delivery) • Lab spaceSeptember 2021Inspection of fabricated part Prepare assembly and test• Alignment telescope • Lab space• All of fabricated parts has been delivered and inspected.October-Decemb er 2021Assembly Moving part test• Electronics connection • Command line software for motors• Assembly done • Moving part test done • Initial alignment doneJanuary 2022-March 2022Prepare SVC test• Dewar assembly • Initial test of dewar vacuum and cooling • IO, SVC assembly and test• Ready for SVC test	April-May 2021	 Prepare for procurement of 		 delivered to KASI Documentation for the fabrication is being done / done for: Non-moving part (done) Moving part (being prepared)
September 2021 Prepare assembly and test Lab space delivered and inspected. October-December 2021 Assembly Electronics connection Assembly done Alignment Command line software for motors Moving part test done Moving part test done January Prepare SVC test Dewar assembly Initial test of dewar vacuum and cooling Ready for SVC test	2021-August	parts✓ Start procurement of		 delivered. Among 3 contracts for fabrication Non-moving part (done) Moving part (under delivery)
 Alignment Moving part test Command line software for motors Moving part test done Initial alignment done Dewar assembly Initial test of dewar vacuum and cooling Ready for SVC test IO, SVC assembly and test 	September 2021		-	•
January 2022-March 2022 V Prepare SVC test IO, SVC assembly and test		 Alignment 	 Command line software 	 Moving part test done
March 2022~ Vuse for SVC test SVC test SVC test started		 Prepare SVC test 	 Initial test of dewar vacuum and cooling IO, SVC assembly and 	 Ready for SVC test
	March 2022~	 Use for SVC test 		SVC test started



Top view of the system

Top view of the assembled calibration box