
1998

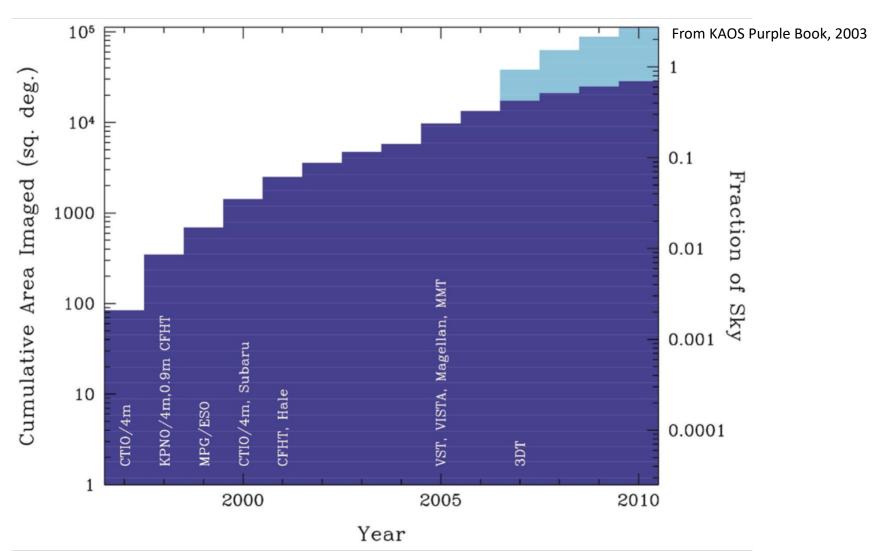
Path to MSE*

Arjun Dey

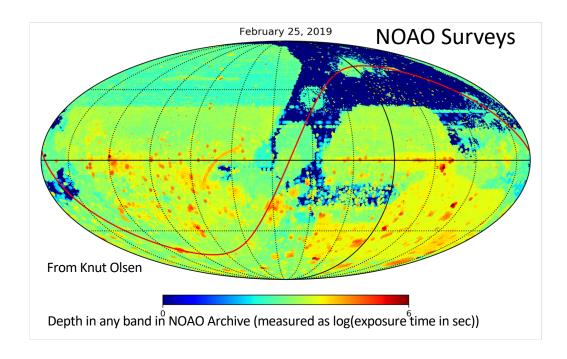
*my version

Outline

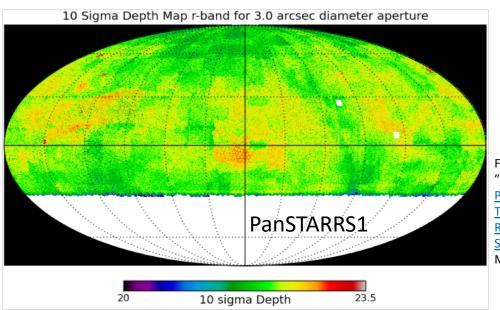
- Some ancient history and how we got here
- Current landscape for MSE
- Unsolicited advice on how to proceed



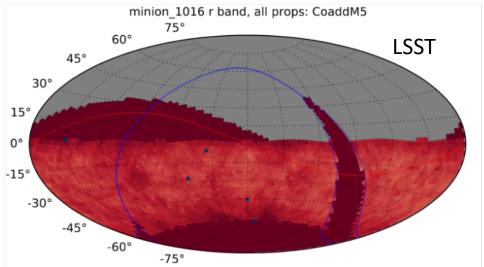
MSE: A Highly Multiplexed Wide-Field Spectroscopic Facility


- An old idea whose time is now:
 - Pioneering spectroscopic surveys by CfA, 2dF, SDSS I-IV
 - Spectroscopic Wide-Field Telescope (SWiFT)
 - Kilo-Aperture Optical Spectrograph (KAOS)
 - Gemini Wide-Field Multi-Object Spectrograph (GWFMOS) => Subaru/PFS
 - BigBOSS => DESI
- Won't discuss LAMOST, 4MOST, SDSS-V, BEAST, etc.

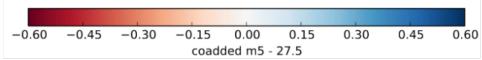
The growth of imaging surveys on >4m telescopes (as imagined 16 years ago):


Where we are now

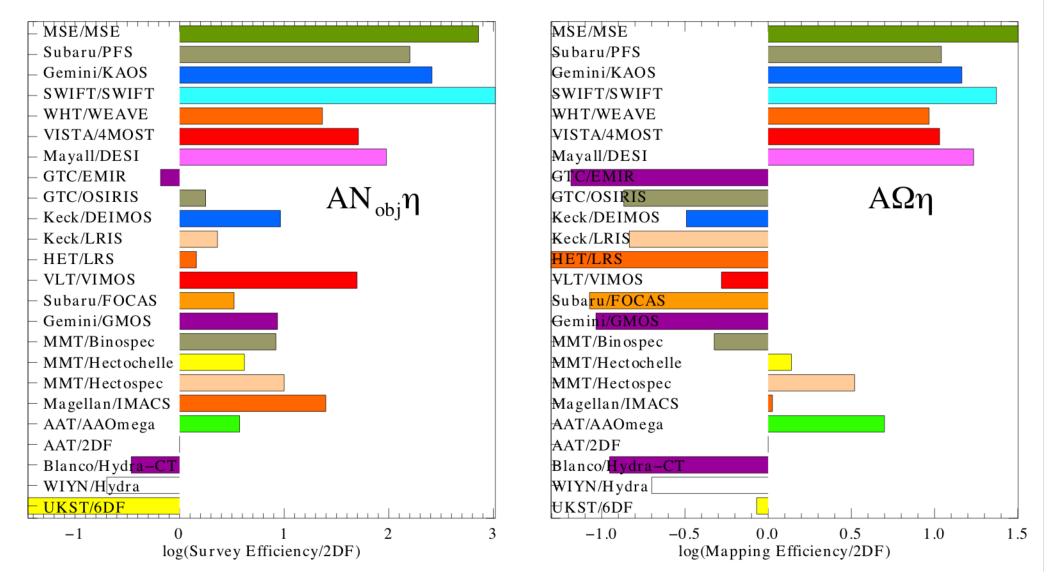
We have <u>already completed</u> imaging of the entire sky to the spectroscopic depths attainable on 10m class telescopes.


Imaging delivers targets and shapes - spectroscopy delivers understanding and physics

Time to start doing astrophysics ...

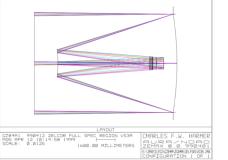


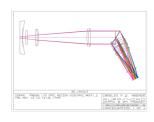
From
"PanSTARRS1:
Panoramic Survey
Telescope and
Rapid Response
System", N.
Metcalfe, 2015

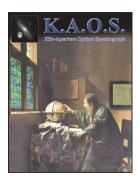


From "Science Driven Optimization of the LSST Observing Strategy", LSST Science Collaboration 2017

What do we need to map the sky?



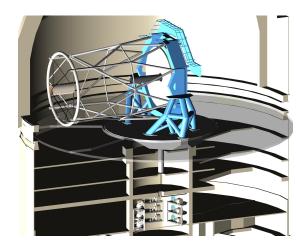

Spectroscopic Wide-Field Telescope 1998/9



 Motivated by remarkable growth of imaging camera real estate and efficiency in the '80s and '90s

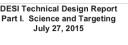
- Key science cases:
 - Growth of large-scale structure
 - Formation and evolution of galaxies
 - Formation of the Milky Way and its neighbors
- Designed as 8m class stand-alone dedicated facility for spectroscopy a single instrument with 8m "front optic"
- Beam-fed spectrograph with 1.5 deg diameter field, slitlets, VPH gratings, R=500/5000/10000
- Estimated WAG cost \$109M

KAOS to GWFMOS (to PFS) 2001-2009


- 2001 Tucson meeting on "Next Generation Wide-Field Multi-Object Spectroscopy"
 - D. Eisenstein discusses the BAO survey concept
 - J. Huchra and others think that there is no case for a dedicated 8-m class SWIFT
 - Don't build a new telescope, coopt an old one
- 2001-2003 KAOS on Gemini (see "Purple Book")


Science cases:

- Dark energy BAO survey
- Galaxy genesis (Milky Way and M31 structure and formation)
- Other science (galaxy evolution, star clusters, etc.)


Design:

- 1.5 deg diameter field of view, 4000-5000 fibers, R=1000/40000, VPH gratings, etc
- June 2003 Gemini Instrumentation Workshop in Aspen, resulted in starting a "feasibility study" for a "wide-field fiber fed optical multi-object spectrometer"
- 2005 GWFMOS Feasibility Study complete; Call goes out for a Conceptual Design Study, two groups selected. Changed in mid-course to design for Subaru behind HSC corrector.
- 2009 Caltech/JPL team selected, project dissolved. PFS begins from this point, starting from the GWFMOS/Subaru concept.

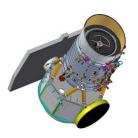
BigBOSS -> DESI 2009-2019

- Lesson learned: use your own telescope!
- March 6, 2009 LBNL+NOAO embark on BigBOSS
- Science case: (see Schlegel et al. 2009, 2011)
 - Cosmology survey: BAO (galaxies+Lya forest), RSD, Σm_v
 - Other science (shared with public access through NOAO)
- Mayall telescope, 3 deg diameter field of view, 5000 fibers, R=3000-4100, and fast operations; telescope structure and optics designed for wide-field
- Similar plan for Blanco ("DECSpec") led by FNAL; Myriad physics & astronomy reviews (DoE/NSF/etc.) => DESI
- March 2019 First light with DESI Commissioning Instrument (camera)
- September 2019 DESI instrument commissioning begins
- 2020-2025 DESI surveys

Main Take-Aways

- Long history (20+ years) of significant effort to develop science case and technical capabilities
- Still no <u>dedicated</u> spectroscopic survey facility currently functioning DESI will be the first
- Science case has evolved some, but not that much:
 - Cosmology: dark energy equation of state and variation with redshift
 - Galactic structure and the origin of the Milky Way
 - Galaxy evolution over cosmic time

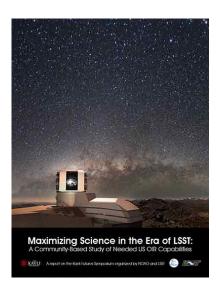
i.e., the scientific need remains!


- Took 10 years to build with an existing telescope
- What has changed?

New opportunities

- Gaia astrometry and proper motions
- All-sky* maps at X-ray, UV, optical, near-IR, radio
- LSST imaging is in sight
- High-resolution on large scales will remain untapped

LSST Spectroscopic Needs: Requirements

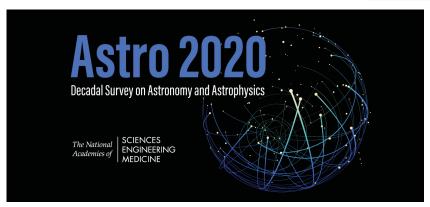

Najita et al. 2016 "Maximizing Science in the Era of LSST"

Capability	Telescope Aperture				
	< 3m	3–5m	8–10m	≳25m	
Optical Imager (Wide-field)	Solar System Stars Transients Dark Energy	Solar System Stars Milky Way Transients Dark Energy	Solar System Stars Transients Galaxy Evolution	Transients Solar System	
NIR Imager		Transients	Transients Milky Way	Transients	
AO IFU R ~ 5000			Galaxy Evolution Dark Energy	Galaxy Evolution Dark Energy	
OIR MOS R = 5000 0.35–1.3 micron		Stars Galaxy Evolution Dark Energy	Stars Milky Way Galaxy Evolution Dark Energy	Galaxy Evolution Dark Energy Milky Way	
Optical SOS R = 1k-5k 0.35-2.5 micron	Stars	Solar System Stars Transients	Solar System Transients Galaxy Evolution Stars Milky Way Dark Energy	Transients Solar System	
Optical SOS R > 20,000			Stars Transients Galaxy Evolution	Stars Transients Galaxy Evolution	
OIR MOS R > 20,000			Milky Way Stars	Stars Milky Way	

MSE scope

LSST Spectroscopic Needs: Illustrative Demand

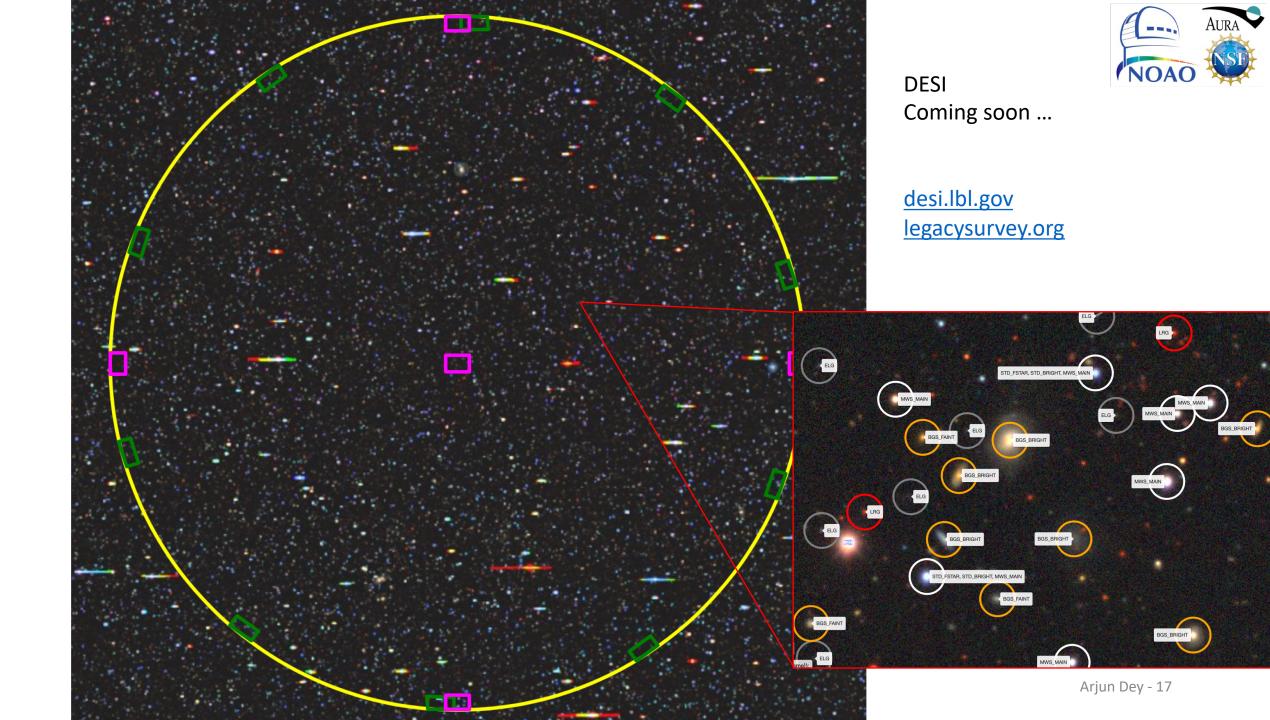
Najita et al. 2016 "Maximizing Science in the Era of LSST"


Capability	Telescope Aperture				
	3–5 m	8–10 m	> 25 m		
Optical Imager (Wide-field)	~2.5 yrs with Blanco/DECam for Solar System science case ~3 yrs for Stars science case				
AO IFU R ~ 5000		~ 1.3 yrs with Gemini/NIFS for Galaxy Evolution	~ 1.3 yrs with TMT/IRIS for Galaxy Evolution		
		science case	science case		
OIR MOS R = 5000		~ 8 yrs with Subaru/PFS	~0.7 yrs with TMT/WFOS		
0.35–1.3 micron		equivalent for Milky Way, Galaxy Evolution, Dark Energy science cases	for Galaxy Evolution science case		
Optical SOS R = 1k–5k		for Transients science case			
0.35–2.5 micron		~0.4 yrs			
		for Galaxy Evolution science case			
OIR MOS		10 fiber-yrs for Milky Way science			
R > 20,000		case			
		~ 550 fiber-yrs for Stars science case			

MSE scope

New challenges

- Competition has increased:
 - SDSS-V on 2.5m
 - LAMOST, DESI, 4MOST, WEAVE on ~4m
 - PFS on 8m
- Multi- λ imaging has increased, so need continues, but ...
- What are the key science cases for the next stage?
 - Galactic structure
 - Cosmology/LSS at z>3 over large areas
 - Spectroscopy for LSST
- There will not be a lack of things to observe, but beware the industrialization of astronomy
 - key science projects will make big gains
 - ... but hopefully will greatly impact the "non-key" fields of astrophysics
 - enable / allow small projects (since innovation comes from small groups)
 - share data (since innovation comes from small groups)


Moving forward

- Reiterate the case to Astro2020 highlighting the science impact: they will be focused on the ELTs
- Emphasize cost effectiveness of the science:
 - Cheaper hardware (perhaps?)
 - Cost-effective operations because of limited observing modes
 - relatively easy to archive and pipeline process uniform datasets (compared to multi-purpose observatories)
- Important to understand the landscape how will the main science cases change with the existence of SDSS-V, DESI and PFS data?
- Important to articulate why new facility is needed (as opposed to just continuing to fund existing capabilities). What is revolutionary about MSE?
 - Power of MSE is in its A Ω + <u>dedicated</u> nature "all-sky" surveys at unprecedented speed.
 - MSE is unique in high-resolution capability at ~10m. How critical is this?
- Allow small-group, small-proposal access need innovative, <u>disruptive</u> science!
- What about making all the data public immediately?

NOAO as a partner

- Long history of pioneering survey operations and support for survey science
- NOAO's 4m telescopes are moving toward high-impact instruments dedicated to long-term projects + ease of operation
- Data systems development has focused on providing services for science with big data
 - Datalab
 - Antares
- Coming soon: NCOA = LSST+Gemini+NOAO
 - Can plan strategically across all platforms to support community desires

