Solving photometric redshift challenges with MSE

Jeff Newman, U. Pittsburgh/PITT PACC

Two spectroscopic needs for photo-z work: training and calibration

Better training / optimization of algorithms using sets of objects with spectroscopic redshift measurements shrinks photo-z errors for individual objects, providing more detailed maps of large-scale structure and improved cosmology constraints, especially for BAO + cluster studies

Figure: Rongpu Zhou

Training datasets will contribute to calibration of photo-z's.
 ~Perfect training sets can solve calibration needs.

Two spectroscopic needs for photo-z work: training and calibration

Better training / optimization of algorithms using sets of objects with spectroscopic redshift measurements shrinks photo-z errors for individual objects, providing more detailed maps of large-scale structure and improved cosmology constraints, especially for BAO + cluster studies

Training datasets will contribute to calibration of photo-z's.
 ~Perfect training sets can solve calibration needs.

Two spectroscopic needs for photo-z work: training and calibration

For weak lensing and supernovae, individualobject photo-z's do not need high precision, but the calibration must be accurate - i.e., bias and errors need to be extremely wellunderstood or dark energy constraints will be off

- uncertainty in bias, $\sigma(\delta_z) = \sigma(\langle z_p - z_s \rangle)$, and in scatter, $\sigma(\sigma_z) = \sigma(RMS(z_p - z_s))$, must both be $\langle \sim 0.002(1+z)$ in each bin for Stage IV surveys. Calibration may be done via cross-correlation methods using DESI/4MOST redshifts (Newman 2008)

Estimated requirements for LSST photo-z training survey are well-matched to MSE (cf. Newman et al. 2015)

- Sensitive spectroscopy of ~20-30,000 faint objects (to *i*=25.3 for LSST)
 - Needs a combination of large aperture and long exposure times
- High multiplexing
 - Required to get large numbers of spectra
- Coverage of full ground-based spectral window
 - Minimum: 0.37-1 micron, 0.35-1.3 microns preferred
- Significant resolution ($R=\lambda/\Delta\lambda>\sim4000$) at red end
 - Allows secure redshifts from [OII] 3727 Å line at z>1
- Field diameters > ~20 arcmin
 - Need to span several correlation lengths for accurate clustering
- Many fields, >~15
 - To mitigate sample/cosmic variance
- Ideally, a Southern hemisphere site
 - To enable sampling across the LSST or WFIRST footprint

MSE is extremely competitive for this work: almost as fast as the ELTs, but much cheaper to run

				Total time,	
	Collecting	Field area		Photometric	
	Area (sq.	(sq.		$\mathbf{Redshift}$	Approx. cost
Instrument / Telescope	m)	arcmin)	Multiplex	Training (y)	per year
4MOST	10.75	14,400	$1,\!400$	5.4	\$3,900,000
Mayall 4m / DESI	11.40	25,500	$5,\!000$	5.1	\$4,200,000
WHT / WEAVE	13.00	11,300	$1,\!000$	6.0	\$4,700,000
Subaru / PFS	53.00	4,500	$2,\!400$	1.1	\$19,000,000
VLT / MOONS	58.20	500	500	2.7	\$21,000,000
Keck / DEIMOS	76.00	54	150	6.8	\$28,000,000
Keck / FOBOS	76.00	314	$1,\!800$	0.8	\$28,000,000
ESO SpecTel	87.89	17,676	3,333	0.7	\$32,000,000
MSE	97.59	6,359	3,249	0.6	\$36,000,000
GMT/MANIFEST + GMACS	368.00	314	420	0.5	\$130,000,000
TMT / WFOS	655.00	25	100	1.2	130,000,000
E-ELT / Mosaic Optical	978.00	39	200	0.5	\$240,000,000
E-ELT / MOSAIC NIR	978.00	46.00	100	0,8	\$240,000,000

Updated from Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy Experiments

MSE for photo-*z* **training**

- ~0.6 dark-years on MSE for fiducial LSST training survey (>75% success rates, 15 fields, 30k spectra; includes weather losses)
- MSE would exceed requirements on area per field and sample size by a fair margin: better sample/cosmic variance than assumed in Newman et al.
 - Unless the 15 paintings are not widely-separated...
 - Almost certainly could get away with ~10 paintings given MSE FoV, cutting survey time by 1/3
- Could trade out fibers as secure redshifts are achieved, so actual sample could include extra bright objects (or have better S/N for galaxy evolution studies)
- Highly synergistic with surveys intended to study galaxy evolution: the photo-z training survey would determine the range of galaxy SEDs as a function of redshift, and how SED relates to local environment / overdensity

MSE for photo-*z* **calibration**

- If spectroscopic samples remain incomplete or redshifts are not highly secure, best hope for calibration is cross-correlation methods (Newman 2008); a.k.a. "clustering redshifts"
- For LSST, easiest to lower crosscorrelation errors by using dilute samples (e.g., DESI QSOs) over wide areas. However, DESI is very sparse at 1.6 < z < 2.2, where QSOs are the only tracer available
- For WFIRST, optimal cross-correlation survey would cover as many z=0-4 galaxies as possible over full survey footprint.
- The proposed MSE cosmology survey could be very useful for this crosscorrelation work

Newman et al. 2015

Conclusions

- MSE can make major contributions to cosmology through photo-z training survey
- Baseline photo-z training survey, >~75% complete:
 - 15 (or 10?) widely-separated pointings, DEEP2 S/N at *i*=25.3
 = 150-220 dark nights for >30,000 spectra to *i* = 25.3
 - Sample objects over full range of galaxy SEDs, 0 < z < 3.7
 - This would be a VERY interesting galaxy-evolution survey.
 Synergistic with proposed MSE galaxy evolution studies, if include enough objects in between the target redshift regimes.
- MSE is an extremely efficient option for this work.
- See the Newman et al. *Spectroscopic Needs* white paper for more: <u>http://adsabs.harvard.edu/abs/2015APh....63...81N</u>

Assumptions made for time calculations

- This is extracted from an attempt to take the largest surveys proposed in the Kavli/NOAO/LSST report (Najita, Willman et al. 2016) and work out how long would be needed to do them
- Common set of assumptions: one-third loss to instrumental effects, weather and overheads; 4m = Mayall/DESI; 8m = Subaru/PFS; all instrumental efficiencies identical; equivalent # of photons will yield equal noise; ignoring differences in seeing/ image quality and fiber/slitlet size. Only medium-resolution fibers included. Assuming full spectral range can be covered simultaneously (likely not true for E-ELT).
- See report (available at http://arxiv.org/abs/ 1610.01661) for details of these surveys
- Estimating time in years on each platform; note that this is generally dark time (very faint targets!)
- Costs based on TSIP + inflation: \$1k/m²/night

Two spectroscopic needs for photo-z work: training and calibration

Better training / optimization of algorithms using sets of objects with spectroscopic redshift measurements shrinks photo-z errors for individual objects, providing more detailed maps of large-scale structure and improved cosmology constraints, especially for BAO + cluster studies

Figure: Rongpu Zhou

Training datasets will contribute to calibration of photo-z's.
 ~Perfect training sets can solve calibration needs.

A few notes

- Basic assumption for exposure time calculations: with comparable resolution and greater wavelength coverage than DEEP2, redshift success at the same continuum S/N should be no lower than DEEP2's (partially because [OII] EW distribution shows little evolution, so [OII] S/N ∝ continuum S/N)
- Difficult to make guarantees about how high success rates will be: many failures are "unknown unknowns", especially for IR-selected samples (as WFIRST). DEEP2based predictions are for success vs. *i* magnitude (and hence optical S/N).

Newman et al. 2015

Potential photo-z performance for LSST ugrizy

Green: Requirements on actual performance; grey: requirements on performance with perfect template <u>knowledge</u> (as in these sims)

photometric redshift

Spectroscopic training set requirements

- Goal: make δ_z and $\sigma(\sigma_z)$ so small that systematics are subdominant
- Many estimates of training set requirements (Ma et al. 2006, Bernstein & Huterer 2009, Hearin et al. 2010, LSST Science Book, etc.)
- General consensus that roughly 20k-30k extremely faint galaxy spectra are required to characterize:
 - Typical z_{spec}-z_{phot} error distribution
 - Accurate catastrophic failure rates for all objects with z_{phot} < 2.5
 - Characterize all outlier islands in z_{spec}-z_{phot} plane via targeted campaign (core errors easier to determine)
- Those numbers of redshifts are achievable with ELTs, if multiplexing is high enough

• Sensitive spectroscopy of faint objects (to *i*=25.3)

Need a combination of large aperture and long exposure times;
 >20 Keck-nights equivalent per target, minimum

- High multiplexing
 - Obtaining large numbers of spectra is infeasible without it

- Coverage of full groundbased window
 - Ideally, from below 4000 Å to ~1.5μm
 - Require multiple features for secure redshift

Comparat et al. 2013, submitted

- Significant resolution (R>~4000) at red end
 - Allows redshifts from [OII] 3727 Å doublet alone, key at z>1

Comparat et al. 2013

Field diameters > ~20 arcmin

 Need to span several correlation lengths for accurate clustering measurements (key for galaxy evolution science and crosscorrelation techniques)

- r₀ ~ 5 h⁻¹ Mpc comoving corresponds to ~7.5 arcmin at z=1, 13 arcmin at z=0.5

- Many fields
 - Minimizes impact of sample/ cosmic variance.

e.g., Cunha et al. (2012)
estimate that 40-150 ~0.1 deg²
fields are needed for DES for
sample variance not to impact
errors (unless we get clever)

Biggest obstacle: incompleteness in training sets

- In current deep redshift surveys (to i~22.5/R~24), 30-60% of targets fail to yield secure (>95% confidence) redshifts
- Losses are worst at the faint end
- Redshift success rate varies with galaxy color, redshift, etc.
- In DEEP2, best parts of BRI color space have ~90% redshift success
- 4 night GMT=15 night MSE depth would yield >~75% completeness; achieving >90% would require ~25 nights/pointing on GMT

Data from DEEP2 (Newman et al. 2013) and zCOSMOS (Lilly et al. 2009)

Note: even for 100% complete samples, current false-z rates would be a problem

- Only the highestconfidence redshifts should be useful for precision calibration: lowers spectroscopic completeness further when restrict to only the best
- A major reason why splitting [OII] is important

Based on simulated redshift distributions for ANNz-defined DES bins in mock catalog from Huan Lin, UCL & U Chicago, provided by Jim Annis

Amount of time required for each survey from the Kavli/NOAO/LSST report (sorted by telescope aperture; in dark-years). Leader for each column shown in bold.

	Total time,	Milky Way	Local			Total
	Photometric	halo survey	dwarfs			(8000 sq.
	$\mathbf{Redshift}$	(8000 sq.	and halo	Galaxy	Supernova	deg. halo
Instrument / Telescope	Training (y)	$\deg., y)$	streams	evolution	\mathbf{hosts}	survey, y)
4MOST	5.4	12.6	10.1	4.2	0.05	32.4
Mayall 4m / DESI	5.1	6.7	9.5	1.1	0.03	22.5
WHT / WEAVE	6.0	13.3	8.3	4.9	0.06	32.5
Subaru / PFS	1.1	8.2	2.0	0.5	0.04	11.9
VLT / MOONS	2.7	67.0	1.9	2.2	0.29	74.0
Keck / DEIMOS	6.8	473.1	8.3	5.6	2.04	495.7
Keck / FOBOS	0.8	81.7	1.4	0.5	0.35	84.7
ESO SpecTel	0.7	1.3	1.2	0.2	0.01	3.4
MSE	0.6	3.1	1.1	0.2	0.01	5.1
GMT/MANIFEST + GMACS	0.5	16.9	0.3	0.4	0.07	18.2
TMT / WFOS	1.2	119.6	2.1	1.0	0.51	124.3
E-ELT / Mosaic Optical	0.5	51.8	0.9	0.3	0.22	53.7
E-ELT / MOSAIC NIR	0.8	43.4	0.8	0.6	0.19	45.7

Total time required for <u>all</u> surveys from the Kavli/NOAO/LSST report (sorted by telescope aperture; in dark-years). Leader for each column shown in bold.

	Total (no	Total (8000 sq.	Total (20k sq.	
	halo survey,	deg. halo survey,	deg. halo survey,	Approx. cost
Instrument / Telescope	dark-years)	dark-years)	dark-years)	per year
4MOST	19.8	32.4	51.3	\$3,900,000
Mayall 4m / DESI	15.8	22.5	32.5	\$4,200,000
WHT / WEAVE	19.2	32.5	52.4	\$4,700,000
Subaru / PFS	3.7	11.9	24.1	\$19,000,000
VLT / MOONS	7.0	74.0	174.6	\$21,000,000
Keck / DEIMOS	22.7	495.7	1205.4	\$28,000,000
Keck / FOBOS	3.0	84.7	207.3	\$28,000,000
ESO SpecTel	2.1	3.4	5.3	\$32,000,000
MSE	1.9	5.1	9.8	\$36,000,000
GMT/MANIFEST + GMACS	1.3	18.2	43.5	\$130,000,000
TMT / WFOS	4.8	124.3	303.7	\$130,000,000
E-ELT / Mosaic Optical	1.9	53.7	131.4	\$240,000,000
E-ELT / MOSAIC NIR	1.6	44.9	109.9	\$240,000,000

Brief descriptions of the Kavli/NOAO/LSST surveys

- Photometric redshift training sample: Minimum of 30,000 galaxies total down to *i*=25.3 in 15 fields >20' diameter
 - 100 hours/pointing on 10m
 - To improve photo-z accuracy for LSST (and study galaxy SED evolution)
 - Highly-complete survey would require ~6x greater exposure time than used here
- Milky Way halo survey: ~125 g<23 luminous red giants deg⁻² over 8,000 (or preferably 20,000) square degrees of sky
 - 2.5 hours/pointing with 8m
 - Allows reconstruction of MW accretion history using stars to the outer limits of the stellar halo. Other objects could be targeted on remaining fibers.

Brief descriptions of the Kavli/NOAO/LSST surveys

- Local dwarfs and halo streams: Local dwarfs were estimated to require 3200 hours on an 8m to measure velocity dispersions of LSST-discovered dwarfs within 300 kpc
 - Requires FoV ≥ 20 arcmin (1 deg preferred) and minimum slit/fiber spacing < 10 arcsec.
 - Characterizing ~10 halo streams to test for gravitational perturbations by low-mass dark matter halos was estimated to require ~25% as much time on similar instrumentation.

Brief descriptions of the Kavli/NOAO/LSST surveys

- Galaxy evolution survey: Minimum of 130,000 galaxies total down to M=10¹⁰ M_{Sun} at 0.5 < z < 2 over a 4 sq. deg. field
 - 18 hours per pointing on 8m
 - To study relationship between galaxy properties and environment across cosmic time
- Supernova host survey: Annual spectroscopy of ~100 new galaxy hosts of supernovae deg⁻² with r<24 over the ~5 LSST deep drilling fields (10 sq. deg. each)
 - ~8 hours per pointing on 4m
 - Provides redshifts for most of the ~50,000 best-characterized LSST SN Ia (other transients/hosts could be observed on remaining fibers)