Target and Observation Managers

"TOMs"

What are they and why would I need one?

Managing astronomical programs

	~	0 (1 5 1
•	Target	Períod Epoch
	HIP5427	4.3356 2457665.248
	HD584110	2.45110 2456450.469
	BD+17.234	17.22361 2457311.902
	HD572881	1.27228 2456890.042
	HD455719	5.620021 2457106.0325
	HD386443	3.246507 245702.4475
	HIP4761	27.6504 2457066.9942
	HD239470	2.35632 2456334.5
	HD230496	73.3672 2456553.097
•	HIP2351	3.56702 2457024.683
	HD938452	3.025624 2457302.7802
	HD99821	3.10025 2457420.062
	HIP5721	2.753266 2457119.928
	HD587325	3.25670 2458814.0472
•		

Managing astronomical programs

Works well for many programs

But challenging for programs with large or highly dynamic targetlists

Effort to coordinate across many facilities

...doesn't scale well to modern programs

- Extremely large target lists
- May or may not be known in advance
- Rapid alerts open up new science
- Rapidly changing priorities
- Large-scale follow-up for confirmation/characterization
- Large datasets
- Rapid feedback & re-evaluation

A number of science teams have developed tools to handle this

Not a new idea!

"TOM" is just a catch-all name for a genre of systems performing similar functions*

Analogous to role of agents in the Heterogenous Telescope Network model, e.g.

Examples of science teams developing similar systems for ~10-15 years ...almost all customised to purpose

"...agent(s) provide the decision making and overall analysis control...software modules that act as proxy for the scientists..."

White & Allen (2008)

[*Alternative suggestions welcome]

Developing TOM Systems

TOM systems will be an essential component of the observing infrastructure in the LSST era

Many existing TOM-like system have overlapping functionality, but are generally customised to their science case

Example Science Use Cases

Supernovae

Near-Earth Asteroids

Microlensing

Transiting exoplanets

Spectra, multiband imaging

ToO alert then Every 1-3d for >month

Short timeseries imaging

Rapid-response short (<1hr) series, daily for 1-3d

Timeseries imaging

Medium-high cadence continuous monitoring for weeks

Spectra, imaging

Phase-dependent continuous imaging, spectra monitoring for weeks-years

Current Science Use Cases

Total targets (per year for transient targets)

Current Science Use Cases

Total new targets per day

Current Follow-up Programs

Targets being observed at any one time at LCO

Big surveys will exceed combined follow-up capability

Follow-up in a target-rich era

Already have more targets than programs can follow-up...and getting worse

Observe continuously

- Need access to filterable target sources (catalog, transient streams)
- Need to develop prioritization criteria

Often need real-time analysis:

- To select targets
- Determine new priorities
- Decide future observations

Follow-up is a function of time

Handle many targets in different states simultaneously

- New alerts
- Reconnaissence phase
- Intensive phase
- Long-term monitoring

Observe on a range of timescales, cadences, facilities

Follow-up observations often evolve with time and target behavior

Follow-up observations coordinated across a range of facilities

Follow-up Data Rate

Generate thousands of observations and TB of data

E.g. Microlensing Key Project		Per year	Project (3yrs*)
~15,000	Images @ ~90MB each Reduction products	~1.3 TB ~4 TB	~4TB ~12 TB
	Discrete observation requests	~900	2,631

*(and we only observe during the northern summer!)

Follow-up Teams

Large collaborations, often international

- but operations/development team usually small

Coordination is important

- geographically-separated team helps, but implies infrastructure needs to facilitiate sharing of data

Keeping track is going to get harder

Current and near-future surveys will generate target catalogs of unprecedented size

Rapid alerts and rapid follow-up increasingly possible and desirable

Managing observations and data is already a major challenge and going to get worse

LSST-era infrastructure needs to address this

Goals of TOM System

- Coordinate programs where the workload of keeping track of targets, observations and data products would otherwise be onerous
- A framework for science-specific analysis to be conducted
- A framework to interact with external services
 - harvesting alerts, target and catalog information
 - submiting observation requests
 - obtaining feedback from telescope facilities
 - accessing data archives
 - coordinating with other TOMs

Role of a TOM in the Ecosystem

Role of a TOM in the Ecosystem

Questions to consider during the session

- Are there science programs whose workflow or requirements we haven't covered?
- Which sources of targets/alerts should be subscribed to?
- Which observing facilities will scientists need to interface with?
 On what timescales, and by what mechanisms?
- What data retrieval facilities will they need to interface with?
- Should teams with similar science goals coordinate? If so, how?