LCO Global Telescope Network: Operations and policies for a time-domain facility

Todd Boroson
Eighteen robotic telescopes – ultimately ~27
- 2-meter, 1-meter, 40-cm

Eight high-quality sites spanning north and south hemispheres
- Several telescopes per site

Uniform instrumentation
- All instruments always available

Automatic calibration, pipeline processing, archiving

Operates as single integrated observatory

Designed and operated to facilitate time domain observations of all types
2-meter telescopes

- Two telescopes in network (Maui and Australia)
- 10 arcmin FOV optical imager w/ many filters
- Low-res (R=500) optical spectrograph (FLOYDS)
1-meter telescopes

- Nine telescopes in network (Chile, South Africa, Australia, Texas)
- Two in production (China) and three more planned (Canary Islands, Texas)
- 30 arcmin FOV optical imager w/ many filters
- High-resolution (R=50,000) optical spectrograph - NRES
 - Optimized for high precision RV work on bright stars
40-cm telescopes

- Seven telescopes in network (Chile, Canary Islands, Maui, Australia)
- Three more in production (Chile, Texas, South Africa)
- 20 X 30 arcmin FOV optical imager w/ many filters
How it works (from the users perspective)

- We allocate hours to successful proposals on a given subnet (2m, 1m, 0.4m)
 - All proposals (other than purchased time) go through peer-review
 - Each approved project has a TAC-assigned rank, which determines its “scientific priority”
- PI and Co-I’s submit observation requests either through a web-form interface or through their own software, which addresses an API end-point in our system
 - Requests may be submitted at any time during the semester in which the allocation is active
 - Users specify: pointing trajectory, exposure time, time window, maximum airmass, minimum distance from moon, acquisition and guide modes (as well as instrumental parameters)
 - Cadence-driven requests generate one or more observations within time window
 - Rapid response requests interrupt ongoing observation (median 6 minutes)
- Users can monitor scheduling status and can request email notification of data availability
- Raw data are returned immediately to LCO headquarters and archived
- Immediate pipeline processing produces a “quick-look” reduced data set
- End of night reprocessing produces a final reduced data set
 - Proprietary period for data is 12 months
Network operates as a single facility

- Single scheduler takes entire set of current requests, produces optimum schedule for network – updates as needed (5-10 min runtime)
- Scheduler attempts to optimize global schedule – including factors for TAC priority, network efficiency
- Local weather stations guide robotic decision-making on site operation
- Calibration program runs automatically – biases, darks, skyflats, photometric standards; arcs and flats for spectroscopy
- Telescopes run automatic pointing, focus adjustment sequences several times during each night.

Full science operations continuously since May 1, 2014

We underallocate slightly with the goal of completing a large fraction of programs
Observing with LCO

- Feedback page provides information on visibility, facility availability, and scheduling
- Thumbnails provide links to data after observation completes
- Users can select “Email me when my data arrives”
Pipeline processing and Archive

- Data immediately transferred to headquarters over internet
- Python pipeline uses daily bias/dark/flat calibrations
- Reduced data product includes instrumental-signature-removed image and source catalog
- “quicklook” available within 15 minutes; “final” at end of night
- FLOYDS data completely reduced to flux/wavelength-calibrated 1D spectra
- Archive based in (Amazon S3) cloud
- Allows identification of relevant data including public
- Simple download of selected data sets
Scientific Performance (imaging)

- Filters include Bessel-Johnson, Pan-STARRS, SDSS, Hα, Hβ
- Continuous (24 hr) monitoring – limited by weather
- 1-meter telescopes used to m=20 (imaging)
- 2-meter telescopes used to m=22 (imaging)
- For bright objects, achieve 2 mmag precision
- For faint objects, achieve photon-limited S/N
On 2-meter telescopes: Maui & Australia

- 30 arcsec long slit; width selectable (1.2 – 6.0 arcsec)
- Robotically position by coordinates or “brightest within radius”
- 1.6Å/pix in 1st order; 0.8Å/pix in 2nd order
- 1 hr exposure gives S/N ~ 20 for V=19
Scientific Performance (NRES)

- Planned for 4 sites by mid-2018
- Fed by optical fibers from 2 1-m telescopes (2.6 arcsec diam)
- R=50,000; Λλ3800-8600
- Ultimate precision/stability: 3 m/s for V=12 in 1 hr

- Exposure can be limited by time or counts
- Pipeline (in development) will provide radial velocity and stellar parameters
Notable LCO “Policies”

- By operating 100% of the time as a dynamically-scheduled robotic observatory, we can efficiently mesh together many (70) programs with a diverse range of timing requirements (including static).

- Every observation is a “Target of Opportunity”
 - We don’t expect observers to know what or when they are going to observe until they submit their requests.
 - Our semester boundaries are a management convenience (also have DD time).

- We operate to achieve a high level of completeness for all projects
 - Some idle time is a necessary consequence.

- Even though the observatory is robotic, you still have to think about what you are doing
 - Experimentation well before your critical observation needs to start is a good idea.

- The goal of producing uniform and consistent data sets requires a coherent calibration program and automatic pipeline processing to remove instrumental signatures.

- Monitoring and managing the data flow is important – it makes little sense to make an observation within a few minutes of a request if the data are not available until 24 hours later.
NSF MSIP award provides U.S. open access

Priorities for Open Access

(1) Follow up discoveries/samples identified with current surveys

(2) Provide experience for community in time domain techniques

(3) Motivate and enable development of infrastructure for time domain research (for LSST era)

- ~1200 hrs of 1m time and 200 hrs of 2m time per semester for 8 semesters
- Proposals to NOAO through their regular proposal process
- LCO semesters shifting to start Dec 1 and June 1 to synchronize with NOAO TAC
- First round: 30 proposals
 - Mix of solar system, stellar, galactic, and extragalactic research areas
 - ~2X oversubscribed
- Next proposals due: September 30, 2017
- Next call for key projects (to start June 2018) early 2018