Search for Galactic hidden gas

The Optical

Scintillation by

Extraterrestria

Refractors

Project

A&A 412, 105-120 (2003) (astro-ph/0302460)

Marc MONIEZ, IN2P3, CNRS

Tucson 03/19/2010

 Cold (10K) => no emission. Transparent medium.

- Cold (10K) => no emission. Transparent medium.
- In the thick disk or/and in the halo

- Cold (10K) => no emission. Transparent medium.
- In the thick disk or/and in the halo
- Average column density toward LMC

 Cold (10K) => no emission. Transparent medium.

 In the thick disk or/and in the halo

Average column density toward LMC

- Cold (10K) => no emission. Transparent medium.
- In the thick disk or/and in the halo
- Average column density toward LMC
 - Fractal structure: covers
 ~1% of the sky.
 Clumpuscules ~10 AU

(Pfenniger & Combes 1994)

These clouds refract light

These clouds refract light

- Extra optical path due to H₂ medium
 - \Rightarrow Varies from **0** (99% sky) to ~**80 000** λ (1%) @ λ =500nm

These clouds refract light

- Extra optical path due to H₂ medium
 - \Rightarrow Varies from **0** (99% sky) to **~80 000** λ (1%) @ λ =500nm
- If the medium has column density fluctuations (turbulences) of order of a few 10-6 then wavefront distorsions may be detectable

Scintillation through a diffusive screen

Propagation of distorted wave surface driven by:

Fresnel diffraction + « global » refraction

Point source **Extended source** Monochromatic m = 1.08m = 0.23**Polychromatic** Ks passband m = 0.23m=0.76 $m = \sigma_I/I = modulation index$

Simulation towards B68

Simulation towards B68

Illumination in **Ks** by a **K0V** star@8kpc (m_V=20.4) through a cloud@160pc

Simulation towards B68

Illumination in **Ks** by a **K0V** star@8kpc (m_V=20.4) through a cloud@160pc

- Diffusion radius R_{diff}
 - separation such that: $\sigma[\phi(\mathbf{r}+\mathbf{R}_{diff})-\phi(\mathbf{r})]=1$ radian
 - Characterizes the turbulence

- Diffusion radius R_{diff}
 - separation such that: $\sigma[\phi(\mathbf{r}+\mathbf{R}_{diff})-\phi(\mathbf{r})]=1$ radian
 - Characterizes the turbulence
- Fresnel radius R_F
 - scale of Fresnel diffraction $\sim 10^3$ km @ $\lambda = 1\mu$ for gas@1kpc

- Diffusion radius R_{diff}
 - separation such that: $\sigma[\phi(\mathbf{r}+\mathbf{R}_{diff})-\phi(\mathbf{r})]=1$ radian
 - Characterizes the turbulence
- Fresnel radius R_F
 - scale of Fresnel diffraction $\sim 10^3$ km @ $\lambda = 1\mu$ for gas@1kpc
- Refraction radius R_{ref}
 - diffractive spot of R_{diff} patches ~ $2\pi R_F^2/R_{diff}$

- Diffusion radius R_{diff}
 - separation such that: $\sigma[\phi(\mathbf{r}+\mathbf{R}_{diff})-\phi(\mathbf{r})]=1$ radian
 - Characterizes the turbulence
- Fresnel radius R_F
 - scale of Fresnel diffraction $\sim 10^3$ km @ $\lambda = 1\mu$ for gas@1kpc
- Refraction radius R_{ref}
 - diffractive spot of R_{diff} patches ~ $2\pi R_F^2/R_{diff}$
- Larger scale structures of the diffusive gaz can play a role if focusing/defocusing configurations happen

- Diffusion radius R_{diff}
 - separation such that: $\sigma[\phi(\mathbf{r}+\mathbf{R}_{diff})-\phi(\mathbf{r})]=1$ radian
 - Characterizes the turbulence
- Fresnel radius R_F
 - scale of Fresnel diffraction $\sim 10^3$ km @ $\lambda = 1\mu$ for gas@1kpc
- Refraction radius R_{ref}
 - diffractive spot of R_{diff} patches ~ $2\pi R_F^2/R_{diff}$
- Larger scale structures of the diffusive gaz can play a role if focusing/defocusing configurations happen
- Projected source size R_S speckle from a pointlike source is convoluted by the source projected profile

- Diffusion radius R_{diff}
 - separation such that: $\sigma[\phi(\mathbf{r}+\mathbf{R}_{diff})-\phi(\mathbf{r})]=1$ radian
 - Characterizes the turbulence
- Fresnel radius R_F
 - scale of Fresnel diffraction $\sim 10^3$ km @ $\lambda = 1\mu$ for gas@1kpc
- Refraction radius R_{ref}
 - diffractive spot of R_{diff} patches ~ $2\pi R_F^2/R_{diff}$
- Larger scale structures of the diffus focusing/defocusing configurations happen
- Projected source size R_S speckle from a pointlike source is convoluted by the source projected profile

R_{diff}: Statistical characterization of a stochastic screen

Size of domain where σ(phase)= 1 radian

• i.e. (at λ = 500 nm)

σ(column density nl)

= 1.8x10¹⁸ molecules/cm²

- This corresponds to
- ∆nl/nl ~ 10⁻⁶ for disk/halo clumpuscule
- ∆nl/nl ~ 10-4 for Bok globule (NTT search)

$$R_{diff} = 263 \, km \times \left[\frac{\lambda}{1 \mu m} \right]^{\frac{6}{5}} \left[\frac{L_z}{10 \, A.U.} \right]^{-\frac{1}{5}} \left[\frac{\sigma_{3n}}{10^{15}} \right]^{-\frac{6}{5}}$$

Modulation index

Essentially depends on R_S/R_{ref}

-> not on the details of the power spectrum of the fluctuations

$$\frac{R_S}{R_{ref}} = \frac{r_s R_{diff}}{\lambda z_1} \sim 2.25 \left[\frac{r_s}{R_{\odot}} \right] \left[\frac{R_{diff}}{1000 \, km} \right] \left[\frac{\lambda}{1 \mu m} \right]^{-1} \left[\frac{z_1}{10 \, kpc} \right]^{-1}$$

 z_1 is the cloud-source distance

Modulation index

Essentially depends on R_S/R_{ref}

-> not on the details of the power spectrum of the fluctuations

$$\frac{R_S}{R_{ref}} = \frac{r_s R_{diff}}{\lambda z_1} \sim 2.25 \left[\frac{r_s}{R_{\odot}} \right] \left[\frac{R_{diff}}{1000 \, km} \right] \left[\frac{\lambda}{1 \mu m} \right]^{-1} \left[\frac{z_1}{10 \, kpc} \right]^{-1}$$

 z_1 is the cloud-source distance

Time scale

If $R_{diff} < R_{ref}$, then R_{ref} is the largest scale and :

$$t_{ref}(\lambda) = \frac{R_{ref}}{V_T} \sim 5.2 \, minutes \left[\frac{\lambda}{1 \mu m} \right] \left[\frac{z_0}{1 \, kpc} \right] \left[\frac{R_{diff}}{1000 \, km} \right]^{-1} \left[\frac{V_T}{1000 \, km/s} \right]^{-1}$$

Where

 z_0 is the distance to the cloud

 V_T is the relative speed of the cloud w/r to the l.o.s.

Stochastic light-curve (not random)

- Stochastic light-curve (not random)
 - Autocorrelation (power spectrum)

- Stochastic light-curve (not random)
 - Autocorrelation (power spectrum)
 - Characteristic times (10's minutes)

- Stochastic light-curve (not random)
 - Autocorrelation (power spectrum)
 - Characteristic times (10's minutes)
 - Modulation index can be as high as 5%
 - decreases with star radius
 - depends on cloud structure

- Stochastic light-curve (not random)
 - Autocorrelation (power spectrum)
 - Characteristic times (10's minutes)
 - Modulation index can be as high as 5%
 - decreases with star radius
 - depends on cloud structure
- Signatures of a propagation effect

- Stochastic light-curve (not random)
 - Autocorrelation (power spectrum)
 - Characteristic times (10's minutes)
 - Modulation index can be as high as 5%
 - decreases with star radius
 - depends on cloud structure

Signatures of a propagation effect

- Chromaticity (optical wavelengths)
 - Long time-scale variations (10's min.) ~ achromatic
 - Short time-scale variations (\sim min.) strongly change with λ

Signature of scintillation

- Stochastic light-curve (not random)
 - Autocorrelation (power spectrum)
 - Characteristic times (10's minutes)
 - Modulation index can be as high as 5%
 - decreases with star radius
 - depends on cloud structure

Signatures of a propagation effect

- Chromaticity (optical wavelengths)
 - Long time-scale variations (10's min.) ~ achromatic
 - Short time-scale variations (\sim min.) strongly change with λ
- Correlation between light-curves obtained with 2 telescopes decreases with their distance

Atmospheric turbulence

Prism effects, image dispersion, BUT $\Delta I/I < 1\%$ at any time scale in a big telescope

BECAUSE speckle with 3cm length scale is averaged in a >1m aperture

Atmospheric turbulence

Prism effects, image dispersion, BUT $\Delta I/I < 1\%$ at any time scale in a big telescope

BECAUSE speckle with 3cm length scale is averaged in a >1m aperture

High altitude cirruses

Would induce easy-to-detect **collective** absorption on neighbour stars. Scintillation by a 10AU structure affect one only star.

Atmospheric turbulence

Prism effects, image dispersion, BUT $\Delta I/I < 1\%$ at any time scale in a big telescope

BECAUSE speckle with 3cm length scale is averaged in a >1m aperture

High altitude cirruses

Would induce easy-to-detect **collective** absorption on neighbour stars. Scintillation by a 10AU structure affect one only star.

Gas at ~10pc

Scintillation would also occur on the biggest stars

Atmospheric turbulence

Prism effects, image dispersion, BUT $\Delta I/I < 1\%$ at any time scale in a big telescope

BECAUSE speckle with 3cm length scale is averaged in a >1m aperture

High altitude cirruses

Would induce easy-to-detect **collective** absorption on neighbour stars. Scintillation by a 10AU structure affect one only star.

Gas at ~10pc

Scintillation would also occur on the biggest stars

Intrinsic variability

Rare at this time scale and only with special stars (UV Ceti, flaring Wolf-Rayet)

$$\tau_{\text{scintillation}} = 10^{-2} \, \text{x} \, \frac{\alpha}{3} \, \text{x} \, \text{S}$$

$$\tau_{\text{scintillation}} = 10^{-2} \, \text{x} \, \frac{\alpha}{3} \, \text{x} \, \text{S}$$

$$\tau_{\text{scintillation}} = 10^{-2} \, \text{x} \, \frac{\alpha}{\text{x}} \, \text{x} \, \text{S}$$

Where

$$\tau_{\text{scintillation}} = 10^{-2} \, \text{x} \, \frac{\alpha}{\text{x}} \, \text{x} \, \text{S}$$

Where

• 10-2 is the max. surface coverage of the fractal structures

$$\tau_{\text{scintillation}} = 10^{-2} \, \text{x} \, \alpha \, \text{x} \, S$$

Where

- 10-2 is the max. surface coverage of the fractal structures
- α is the fraction of halo into molecular gas

$$\tau_{\text{scintillation}} = 10^{-2} \, \text{x} \, \alpha \, \text{x} \, S$$

Where

- 10-2 is the max. surface coverage of the fractal structures
- α is the fraction of halo into molecular gas
- **S** depends on the structuration... Unknown

Assuming R_{diff} = 1000km (10 AU clumpuscules)

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC => $M_V \sim 20.5$

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC => $M_V \sim 20.5$
 - √ Characteristic time ~ 1 min. => few sec. exposures

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC =>
 - ✓ Characteristic time ~ 1 min.
 - ✓ Photometric precision required
- \Rightarrow $M_V \sim 20.5$
- => few sec. exposures ~1%

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC => $M_v\sim20.5$
 - ✓ Characteristic time ~ 1 min. => **few sec. exposures**
 - ✓ Photometric precision required ~1%

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC => $M_v\sim20.5$
 - ✓ Characteristic time ~ 1 min. => **few sec. exposures**
 - ✓ Photometric precision required ~1%

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC
 - ✓ Characteristic time ~ 1 min.
 - ✓ Photometric precision required
- $=> M_{V} \sim 20.5$
- => few sec. exposures
 ~1%

✓ Dead-time < few sec.</p>

=>

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC
 - ✓ Characteristic time ~ 1 min.
 - ✓ Photometric precision required
- $=> M_{V} \sim 20.5$
- => few sec. exposures
 ~1%

- ✓ Dead-time < few sec. =>
- ✓ B and R partially correlated =>

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC
 - ✓ Characteristic time ~ 1 min.
 - ✓ Photometric precision required
- => M_V~20.5
- => few sec. exposures ~1%

- ✓ Dead-time < few sec.
- ✓ B and R partially correlated =>
- ✓ Optical depth probably small =>

- Assuming R_{diff} = 1000km (10 AU clumpuscules)
- 5% modulation@500nm => $r_s < r_{A5} (10^5/deg^2)$
 - ✓ Smaller than A5 type in LMC
 - ✓ Characteristic time ~ 1 min.
 - ✓ Photometric precision required

- ✓ Dead-time < few sec.</p>
- ✓ B and R partially correlated
- ✓ Optical depth probably small

 Expect 1000xα fluctuating light-curves (>5%) when monitoring 10⁵ stars if column density fluctuations > 10⁻⁶ within 1000km

 Expect 1000xα fluctuating light-curves (>5%) when monitoring 10⁵ stars if column density fluctuations > 10⁻⁶ within 1000km

If detection

- Get details on the clumpuscule (structure, column density -> mass) through modelling (reverse problem)
- Measure contribution to galactic hidden matter

 Expect 1000xα fluctuating light-curves (>5%) when monitoring 10⁵ stars if column density fluctuations > 10⁻⁶ within 1000km

If detection

- Get details on the clumpuscule (structure, column density -> mass) through modelling (reverse problem)
- Measure contribution to galactic hidden matter

If no detection

 Get max. contribution of clumpuscules as a function of their structuration parameter R_{diff} (fluctuations of column density)

9599 stars monitored

- 9599 stars monitored
- ~ 1000 exposures/night

- 9599 stars monitored
- ~ 1000 exposures/night
- Search for ~10%
 variability on the 933
 best measured stars

- 9599 stars monitored
- ~ 1000 exposures/night
- Search for ~10%
 variability on the 933
 best measured stars
- Signal if ∆(nl)/(nl) ~ 10⁻⁴
 per ~1000 km (nl = column density)

- 9599 stars monitored
- ~ 1000 exposures/night
- Search for ~10%
 variability on the 933
 best measured stars
- Signal if ∆(nl)/(nl) ~ 10⁻⁴
 per ~1000 km (nl = column density)
- Mainly test for background and feasibility

Test towards Bok globule B68 NTT IR (2 nights)

one fluctuating star?

(other than known artifacts)

t = 5506 s

- LSST has the capacity for this search
 - Large enough (diameter and field)
 - Fast readout (2s) -> allows fast sampling

- LSST has the capacity for this search
 - Large enough (diameter and field)
 - Fast readout (2s) -> allows fast sampling
- But current sampling strategy does not fit
 - Need few hours series of short exposures
 - But no need for regular long time sampling (contrary to microlensing or SN searches)

- LSST has the capacity for this search
 - Large enough (diameter and field)
 - Fast readout (2s) -> allows fast sampling
- But current sampling strategy does not fit
 - Need few hours series of short exposures
 - But no need for regular long time sampling (contrary to microlensing or SN searches)
- Complementary synchronized observations for
 - test of chromaticity
 - decorrelation with distant simultaneous observations

complements

A network of distant telescopes

A network of distant telescopes

 Would allow to decorrelate scintillation from interstellar clouds and atmospheric effects

A network of distant telescopes

- Would allow to decorrelate scintillation from interstellar clouds and atmospheric effects
- Snapshot of interferometric pattern + follow-up
 - √ Simultaneous R_{diff} and V_T measurements
 - √ => positions and dynamics of the clouds
 - ✓ Plus structuration of the clouds (inverse problem)

Blending (crowded field)=> differential photometry

- Blending (crowded field)=> differential photometry
- Delicate analysis
 - Detect and Subtract collective effects
 - Search for a not well defined signal
 - VIRGO robust filtering techniques (short duration signal)
 - Autocorrelation function (long duration signal)
 - Time power spectrum, essential tool for the inversion problem (as in radio-astronomy)

- Blending (crowded field)=> differential photometry
- Delicate analysis
 - Detect and Subtract collective effects
 - Search for a not well defined signal
 - VIRGO robust filtering techniques (short duration signal)
 - Autocorrelation function (long duration signal)
 - Time power spectrum, essential tool for the inversion problem (as in radio-astronomy)
- If interesting event => complementary observations (large telescope photometry, spectroscopy, synchronized telescopes...)