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Possible cataclysmic events in galactic nuclei

SNe, GRBs Flare from an AGN

Tidal disruption of a star Binary supermassive black
by a black hole hole coalescence




Mergers of Binary
Supermassive Black Holes



The bhasics of SBBH coalescence
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(from Cuadra et al. 2009)
figure from Backer et al. (2003), based

on the work of Begelman et al. (1980)



Event rates and observational consequences

dNg,,/dzdt [yr-1]

dNg,,/dzdt [yr-1]

LISA detection rate: 10 — few x 100 yr

from Sesana et al. (2009)
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Tidal Disruption of Stars by a
Supermassive Black Hole



The basics of tidal disruption

» Tidal disruption condition: ar > gx

M 3 P M\ 23
e () ()

(A

strength of tidal encounter

_ —1
(a.k.a. penetration factor) B = (Rp/Rr)

for a 1 Me main-sequence star,
Rt = Rs when M, ~ 10° Mg

for a 0.6 Me white dwarf,
Rt =Ry when M, ~ 10° Mg
Rt = Riso when M, ~ 10% Mg



The disruption: play-by-play

Tidal tail, At~20 days

First passage',v"‘At~1 day

(figures from Lee & Kim 1996) IR ;.
time scales for Self-intersection of tail *

m*=1 M@, Mo=1 06 M@, B21



Accretion of returning debris ’

» Accretion rate oc t -%/3

Rees (1988), Evans & Kochanek (1989),
Lodato et al. (2009), +many others
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» Early times: blackbody
spectrum with T ~ 10° K

Loeb & Ulmer (1997); Ulmer (1999),
Strubbe & Quataert (2010)
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» Late times: illumination of
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debris by soft-X/UV photons T e
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and line emission Time (days)
Bogdanovic' et al. (2004) figure from

Strubbe & Quataert (2010) Bogdanovi¢ et al. (2004)



What can we learn by observing such events?  '°

» ldentification of “dormant” black holes in
galactic nuclel,

including IMBHSs, which can disrupt WDs.

» (Constraints on stellar dynamics in galactic
nuclel, via event rates

mass segregation (compact objects)
isotropy of stellar orbits (i.e., triaxiality)

» Black hole and galaxy co-evolution

event rates depend on BH mass spectrum and
host luminosity distribution, and their relation



Recent predictions of event rates

»

»

»

Magorrian & Tremaine (1999)

' ~10 “ galaxy ~' yr ! for MS stars in

L< 1070 Le galaxies with steep density cusps
(C ~ 10 = galaxy ' yr ! for giants)

Wang & Merritt (2004)
dI'(M.)/dM = 10 =% Me %2> galaxy ' yr =1 (implied)
= I'(10-10% Me) = 10 = yr - Mpc 3

M~ 1023 Me yr'(= 10°% Me in 10° years)

important for growth of small BHs
(Magorrian & Tremaine 1999; Merritt & Poon 2004)
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More on event rate predictions

» Rates depend on BH mass spectrum, galaxy
luminosity distribution, and relation between

the two.

» Loss cone assumed to be re-populated via 2-
body relaxation.

Triaxiality leads to faster re-filling of loss cone

» Chen et al. (2009)
Enhanced rate in case of a q«1 binary BH

I ~1 galaxy ~' year ', for ~10 4 years



Observations: serendipitous discoveries

» The basic idea in past searches:
Abrupt changes in UV/X-ray flux (x 10 or more)

Followup observations: X-ray and emission-line
variability; rule out other explanations (AGN, SNe)

» ~9 X—ray events (Komossa, Greiner, Grupe, Brandt)
4 events show: L(t) ~ t /3 over > 10 years

» 1 UV event: NGC 4552 (Renzini et al.1995)

» 4 Emission-line events:

NGC 1097, Pic A, IC 3599 (also X-ray), SDSS J 0952+2143 (SN?)

(Storchi-Bergmann et al. 1993, Halpern & Eracleous 1994, Sulentic
et al 1995, Grupe, Komossa et al 2009)
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X-ray flares: active vs inactive galaxies

» Variability of a weak AGN will compicate our
identification of tidal disruption events.

» Possible cataclysmic variability of AGNs not
well known; must assume the worst...

» We do know that LLAGNs can vary by factors
of several in the UV over a few years.



»

»

»

»

Observations: systematic X-Ray surveys

ROSAT all-sky survey vs later, pointed
observations (3 events) (Donley et al. 2002)
' ~10 —~ galaxy = yr -

ROSAT all-sky survey vs XMM slew survey
(2 events) (Esquej et al. 2002)
I ~few x 10 =4 galaxy ' yr 1

Multiple observations of Chandra deep fields
(0O events) (Luo et al. 2008)
I' <10 4 galaxy 1 yr -

Multiple observations of galaxy clusters
(1 event so far) (Maksym & Ulmer in progress)

15



Observations: systematic UV surveys

»

»

»

»

Gezari et al. (2006, 2008, 2009)

Comparison of multiple GALEX exposures of
the same fields in search of UV flashes.
X 10-100 increase in UV flux

Followup observations:
optical spectroscopy and photometry
X-ray “spectroscopy”

3 events found so far with very similar
properties

Rate consistent with few x 10 = galaxy ' yr
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Light curves of GALEX events
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Spectral energy distributions of GALEX events  '°
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Observations: what we have learned so far 19

» 12-17 candidate events known

» Event rates broadly consistent with predictions
but with large uncertainties

» Some of the predicted signatures seen in each
case (but not all signatures seen in same case)

» The most simple models do the best job
explaining light curves and SEDs...

Need to identify a few events with confidence to
test the theory but we cannot be confident

about our identifications without a good theory.




Signatures to look for: light curves

vL, (erg/s)

from Strubbe & Quataert (2010)
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Signatures to look for: late-time spectra

vL, (erg/s)

from Strubbe & Quataert (2010)
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How do we tell them apart from SNe?

»

»

»

»

Must coincide with center of host galaxy
Decay rate: t /3 (or shallower)

Continuum is blue: starts at g-r~-1 and gets
bluer with time (hegative K correction)

AGN-like ionizing continuum should lead to
high-ionization, AGN-like emission lines,
especially at late times.

FWHM ~ few x 1000 km/s

k



Predictions for ongoing and upcoming surveys 23

Disk+ Super
Debris Eddington

(yr™") (yr™")

PanSTARRs 3x | 4-12 | 200

PrsTARR 105|021 |
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Numbers from Strubbe & Quataert (2010),
In agreement with Gezari et al. (2008)




Breakdown by BH mass

from Strubbe & Quataert (2010)

dlr/d(In Me) (yr -1
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Disruption of WDs 20

» Thermonuclear reactions possible in strong
encounters (Rosswog et al. 2008, 2009)
Resembles SN at early times

» Accompanied or preceded by gravitational
wave signal

(detectable up to 100 Mpc if in bound orbit)
Kobayashi et al. (2004); Sesana et al. (2008)

» Unambiguous inferences

Confirmation of event (and determination of
redshift) from fairly unique emission-line signature

Only BHs with M. < 10° Me can disrupt WDs



Strong encounter, burning, and accretion

6.8 sec

7.0 sec

/.2 sec

Mmwp=0.2 Me, Me=10° Mo , =12
Rosswog et al. (2009)
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WD capture and disruption rates

» WDs In unbound orbits
(Rosswog et al. 2009)

~ 10% of MS star rate

sensitive to mass segregation
I' ~10 = galaxy =1 yr 1
counting IMBHSs in globulars

» WDs In bound orbits:
(Sesana et al. 2008)

I' ~103-10 -° galaxy = yr -
For a Milky Way-like galaxy with Me ~ 10° Me
Disruption preceded by strong GW signal

2/



The aftermath of the disruption of a WD

I—Iine [erg 8_1]

(Clausen & Eracleous 2010, in preparation)
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Could this be it?

Spectrum of a globular cluster in NGC 4472 hosting an
“ultraluminous X-ray Binary” (Zepf et al. 2008)
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We eagerly await gravity to
make some waves

The End




