GMT – Giant Magellan Telescope

- 21.9-m effective aperture
 - 7 mirrors / 8.4-m
 - 20' FoV
- Early science mid-2019
 - With 4 mirrors
- All 7 mirrors and AO ~2022
- Located at Las Campanas
- First instruments
 - Optical MOS
 - Optical Echelle
 - Near-IR AO IFU/Imager

• Queue / Remote / Classical operating modes

LSST Members

- Harvard
- SAO
- Texas A&M University
- University of Arizona
- Chile

Not LSST Members

- University of Chicago
- University of Texas Austin
- Carnegie DTM
- Carnegie Observatories
- Australia
- South Korea

GMT Science Case - Synergy with LSST

- **G-CLEF** High resolution spectroscopy: late-2019 [Andrew Szentgyorgyi]
 - R = 100,000 / 40,000 / 25,000 [S/N $^{\sim}$ 10 for 1^h at r=22]
 - Modes: Precision radial velocity / precision abundance / high throughput
 - 0.36 1 um (full coverage with dual-beam design)
- GMACS Multi-object optical spectroscopy: mid-2020 [Darren DePoy]
 - R = 1250 (blue) and 2500 (red) [S/N \sim 10 for 1 $^{\rm h}$ at r=25]
 - >80 slitlets per mask
 - FoV: >8 arcmin
 - 0.38 1 um (full coverage, dual-beam)
 - GMTIFS

S AO near-IR IFU spectrograph / imager: 2021 [Peter McGregor]

- R = 5,000 and 10,000
- Image slicer IFU: 6, 12, 25, 50 mas spaxels (45 slits x 88 spatial x 4096 λ)
- ZJHK coverage
- Imager: 20" FoV; 5 mas pixels

GMT Instrumentation Timeline: Possible 1st Gen

- **MANIFEST** Facility fiber feed: 2022 [Matthew Colless]
 - FoV: 20 arcmin
 - Single fibers / small deployable IFUs / image slicer fiber bundles
 - Feeds for G-CLEF
 - 6 objects with full spectral coverage
 - 40 objects with limited order coverage
 - Feed for GMACS
 - 200-300 objects
 - Image slicers to improve resolution (to 10,000)
 - Some deployable IFU bundles
 - Minimum spacing < 10"
 - Configuration in 2 min

- 5-15 minutes: depends on active instrument and desired instrument
- Best case: Use current instrument (but assume large slew)
 - Slew (2), Active Optics (3) = 5 min
- Intermediate:
 - Add AO setup time when AO needed (\sim 5) = 10 min
- Worst case: Switch to AO instrument from large natural seeing instrument
 - Go to zenith (1), insert M3 (5), slew (1), Act Optics (3), AO (5) = 15 min

- G-CLEF:
 - <u>http://alerce.astro.puc.cl/gclef.html</u>
- GMACS:
 - <u>http://snagglepuss.as.utexas.edu/cgi-bin/gmacs.cgi</u>
- GMTIFS (spectrograph)
 - <u>http://www.mso.anu.edu.au/gmtifs/Performance/GMTIFS-IFS-ETC.shtml</u>

- Faint Object Spectrograph for the GMT
 - Wide-field
 - More than 100 arcminute²
 - Multi-object
 - Direct slit plates
 - 1000 simultaneous targets at low resolution
 - Moderate resolution
 - 200-5000
 - Optical
 - 380nm to 1000nm simultaneous coverage
 - Seeing limited (0.7 arcsec slit)
- MANIFEST fiber feed allows access to entire 20 arcmin diameter GMT field

GMACS Conceptual Design

GMACS Conceptual Design

 $\langle \mathbf{0} \rangle$

Example: CH₄ surrounded by LN₂ ice

TNO/KBO surface composition

END

www.gmto.org

Also on Facebook

?