Identification of Outflows and Candidate Dual Active Galactic Nuclei at 0.8 < z < 1.6

R. Scott Barrows

University of Arkansas

Collaborators:

Claud Lacy, Julia Kennefick, Julie Comerford, Daniel Stern, Daniel Kennefick, Joel Berrier, Chao-Wei Tsai

Binary Black Holes and Dual AGN, Nov 30, 2012

Spectroscopic Selection of Candidates

Dual AGN:

Double-peaked narrow line component

(Barrows et al. 2012)

(Barrows et al. 2011)

Binary SMBH:

Double-peaked broad line component

Spectroscopic Selection of Candidates

Dual AGN:

Double-peaked narrow line component

Binary SMBH:

Double-peaked broad line component

(Barrows et al. 2011)

Utilizing Strong AGN Emission Lines

SDSS filter range: 3800Å-9200Å

Prominent quasar narrow emission lines accessible in SDSS spectra at

 $z\sim0.1$

Composite quasar spectrum from Vanden Berk et al., 2001

Utilizing Strong AGN Emission Lines

SDSS filter range: 3800Å-9200Å

Prominent quasar narrow emission lines accessible in SDSS spectra at

 $z \sim 0.8$

Composite quasar spectrum from Vanden Berk et al., 2001

Utilizing Strong AGN Emission Lines

SDSS filter range: 3800Å-9200Å

Prominent quasar narrow emission lines accessible in SDSS spectra at

 $z \sim 1.6$

Composite quasar spectrum from Vanden Berk et al., 2001

Motivation

A Candidate Dual AGN at z=1.175 (Barrows et al. 2012)

Motivation

Project Description

```
Identifying analogs of spectroscopic dual AGN candidates at higher redshifts (Barrows et al., submitted to ApJ)
```

Parent Sample: SDSS DR 7 Quasar Catalog

Redshift cut: 0.8 < z < 1.6 (35,250)

Selection of High-z Sample:

- 1. Visual identification of sources with double-peaked [NeV] and/or [NeIII] \rightarrow 154 sources
- 2. Spectroscopic modeling of visually-selected sample
 - 2 Gaussians vs 1 Gaussian
 - ightarrow 124 sources

Selection of low-redshift comparison sample

- Type 1 AGN from Smith et al. (2010) with measurable double [NeV]/[NeIII] peaks.
 - \rightarrow 42 sources

Examples

Scenarios for a Single AGN

Outflows from AGN

- Driven by the jets of powerful radio quasars
- Driven by radiation pressure in high accretion rate AGN
- Can affect star formation and SMBH growth
- Important in evolutionary models of galaxies (AGN feedback)
- May have been more important at high redshift, when most massive galaxies completed the bulk of their growth

Investigating the Outflow Scenario in our Sample

- Correlations between line properties and quasar properties:
 - 1) ΔV vs L_{Edd}
 - 2) Radio Loudness

Statistical Evidence for Radiatively Driven Outflows

- Connection between Eddington ratio and line-splitting
- Stronger for [NeV] than for [NeIII]
 - → Radiatively driven outflows?

Radio Loud Fraction

Radio loudness: $\mathcal{R} = L_{\nu, 5 \mathrm{GHz}} / L_{\nu, 250 \mathrm{nm}}$

Radio powers from FIRST (93% of sample in FIRST footprint)

Criterion:

 $\mathcal{R} \geq 10 \rightarrow \mathsf{Radio} \ \mathsf{Loud}$

 $\mathcal{R} < 10
ightarrow \mathsf{Radio}$ Quiet

 $f_{RL} = 10\%$ in the parent sample (SDSS quasars at 0.8 < z < 1.6) $f_{RL} = 22\%$ in our double-peaked [NeV]/[NeIII] sample

Preferential selection of radio loud sources suggest the origin of the line-splitting may be related to radio jets for some of our sample.

→ Jet-driven outflows?

Dynamical Argument for Dual AGN in the Sample

Keplerian Orbit:

$$rac{M_1}{M_2}=rac{V_2}{V_1}
ightarrowrac{L_b}{L_r}=\epsilon_{b,r}rac{\Delta\lambda_r}{\Delta\lambda_b}$$
 (Wang et al., 2009)

Conclusions for Candidate Dual AGN at 0.8 < z < 1.6

- Line splittings correlated with Eddington ratios
- Stronger correlation for [NeV] than for [NeIII]
 - ightarrow Suggests the presence of radiatively driven outflows
- ullet A significant fraction ($\sim 22\%$) are radio loud
 - ightarrow Radio jets may contribute to line-splitting in some sources
- ullet Bias toward large ΔV s
 - ightarrow High velocity outflows, or dual AGN at sub-kpc separations
- Correlation between $\frac{L_b}{L_r}$ and $\epsilon_{b,r} \frac{\Delta \lambda_r}{\Delta \lambda_b}$
 - ightarrow dynamical evidence for dual AGN in the sample

Binary Supermassive Black Hole Candidates

Dual AGN:

Double-peaked narrow line component

(Barrows et al. 2012)

Binary SMBH:

Double-peaked broad line component

Binary Supermassive Black Hole Candidates

"An Extreme Double-Peaked Broad-Lined AGN with Spiral-Shaped Radio Morphology" (Tsai et al., *in prep*)

Optical spectrum from GMOS-S revealing a complicated broad line morphology

Broad line offset of \sim 3800 km s $^{-1}$

Broad blue peak

Possible redshifted absorption feature

Optical-NIR photometry variability over 3-20 yrs

Complex radio jet structure

Radio Morphology

- Primary jet with FRII hotspot
- 'Zig-zag' pattern in NW primary jet
- Faint, linear structure nearly perpendicular to the primary jet
- Curved, arc-like structure

Suggests two physically perpendicular sets of jets

Broad Emission Line Modelling

Top: Elliptical accretion disk model (e=0.6) from Eracleous et al., (1995) Bottom: Circular disk model from Chen and Halpern (1989) plus a broad Gaussian

Conclusions for Extreme Double-Peaked Emitter

Scenario for a Single SMBH:

- Single SMBH with a thin, line emitting accretion disk, inclined by 32° from face-on
- Requires external illumination
- Complex asymmetry or non-uniformity in the disk accounting for the excess blue peak emission
- Fails to explain the complicated radio morphology

Scenario for a Binary SMBH

- \bullet Secondary, accreting SMBH generates the excess blue peak emission
- Disk profile arises from the primary SMBH's accretion disk
- Both AGN generate radio jets

Identification of Outflows and Candidate Dual Active Galactic Nuclei at 0.8 < z < 1.6

R. Scott Barrows

University of Arkansas

Collaborators:

Claud Lacy, Julia Kennefick, Julie Comerford, Daniel Stern, Daniel Kennefick, Joel Berrier, Chao-Wei Tsai

Binary Black Holes and Dual AGN, Nov 30, 2012