Launching Relativistic Jets

John F Hawley
University of Virginia

Aspen Summer 1986

Jets in the 80's

An imperfect recollection

- VLA slowly realizing its capability
- Ubiquity of jet phenomenon beginning to be recognized
- Are jets evidence for supermassive black holes in AGN?
- Radio galaxies at high redshift implications for cosmology
- "Sidedness" of jets?
- Jet morphology and interaction with environment
- Hydrodynamic 2D cylindrical jet simulations
- Collimation mechanisms?
- Thick tori existence and stability?
- Jet acceleration: hydrodynamic, radiation driven, magnetic fields?

De Young, D. S., *Jets in Extragalactic Radios Sources*, Nature, 1984 De Young, D. S., *Astrophysical Jets*, Nature, 1991

Astrophysical Jets Everywhere

- Young stellar objects
- X-ray binaries accreting NS or BH
- Symbiotic stars accreting WD
- Supersoft X-ray sources accreting
 WD
- AGN accreting supermassive BH
- Gamma ray burst systems

The Ubiquity of Jets suggests that they result from general conditions.

Gravity + Rotation (disk and/or central star) + Magnetic fields

Source of Energy: Accretion or rotation of central star

The Importance of Magnetic Fields

- Magnetic fields make the ionized gas in an accretion disk spiral inward. The magneto-rotational instability (MRI) is important in accretion disks because it converts stable orbits into unstable motion.
- Magnetic fields can create stresses inside the marginally stable orbit around a black hole, significantly increasing total efficiency.
- Magnetic fields can extract energy and angular momentum from spinning holes and drive jets.

Jet Theory

- Disk rotation + vertical field: Blandford-Payne type wind/jet
- Black Hole rotation + vertical field: Blandford-Znajek Poynting flux jet
- Idealized models and axisymmetric simulations with initial vertical fields have demonstrated efficacy of these mechanisms.
- Under what circumstances will a large-scale poloidal field be present? Is such a field always required for jet formation? Can such a field be generated in the disk by a dynamo process, or is it brought in from outside?

Simulating Global Accretion Disks

The role of magnetic fields:

Jets and Stress

Global Simulations

- Global problem difficult to resolve spatially: turbulent scales to parsecs
- Wide range of timescales
- Presently limited to simple equation of state
- Dissipation, heating, thermodynamics too limited
- Only simple radiative losses; no global radiative transfer
- System scales with M; density set by assumed accretion rate
- Several numerical codes in use by several groups

General Observations: Global Simulations with Initial Dipole Field

- Accretion disk angular momentum distribution near Keplerian
- Disk is MHD turbulent; internal stress due to the magnetorotational instability
- No abrupt changes at marginally stable orbit
- Large scale fluctuations and low-m spiral features
- No stress edge; enhanced efficiency
- Transfer of angular momentum from black hole to disk
- Implications for the equilibrium spin of the black hole
- Some studies of disk tilt/misalignment (e.g., Fragile et al.)

Simulation Results: Jets

- Poynting flux dominated within funnel; only at funnel wall is there significant mass flux
- Jet luminosity increases with hole spin – Poynting flux jet is powered by the black hole
- Fraction of jet luminosity in Poynting flux increases with spin
- Both pressure and Lorentz forces important for acceleration
- Existence of funnel jet depends on establishing radial funnel field
- Jet power depends on field strength, total flux
- Lorentz factor Γ for jet depends on mass loading this is not reliable in current simulations

Substantial Jet Energy Efficiency for Rapid Spin: Dipole Initial Field

a/M	$oldsymbol{\eta}_{\mathit{EM}}$	$oldsymbol{\eta}_{\mathit{NT}}$
-0.9	0.023	0.039
0.0	0.0003	0.057
0.5	0.0063	0.081
0.9	0.046	0.16
0.93	0.038	0.17
0.95	0.072	0.10
0.99	0.21	0.26

Tchekhovskoy, McKinney & Narayan 2012

Origin of Large Scale Jet Field

- Is net vertical flux required, or just large-scale poloidal field?
- Can significant large-scale poloidal field be generated solely by the MRI within turbulent disks?
- Can net field be advected inward by MRI turbulent disks? Balance magnetic diffusion/reconnection timescale against accretion timescale
- How does the presence or absence of a jet relate to the overall state of the disk and its magnetic field?

Field Topology

- Properties of magnetized black hole accretion disks seem to be remarkably insensitive to magnetic field topology: the only dependence is in terms of the magnetic field strength. Appearance of disk should be independent of magnetic field topology
- This is not true for the jet:
 - Jet formation requires a consistent sense of vertical field to brought down to the event horizon
 - This occurs readily for dipole, less so for quadrupole, not at all for toroidal initial field topologies
 - Reconnection events between funnel and disk field determine the variability of the jet

Origin of the poloidal Funnel Field
From an initial dipole
2D Simulation – thick torus
Color: Plasma Beta
White field lines

Radial Advection of Net Vertical Field

Can net field be brought in from large distances?

Movie: 3D simulation of vertical field model. Vector potential A_{ϕ} gradients indicate field line locations

Transport of Net Flux

- Global processes can dominate over local processes
- Within the turbulent disk (and in turbulent shearing box simulations) magnetic flux can "diffuse"
- MRI turbulence ("alpha viscosity") in disk effective at transporting angular momentum and mass; rapid reconnection prevents effective transport of net flux
- Reconnection can make net flux transport nonlocal
- "Turbulent magnetic Prandtl number" description not particularly useful

Origin of Large Scale Jet Field: Key Questions

- Is net vertical flux required, or just large-scale poloidal field?
 - In simulations, strong jets only form when dipole is brought down to the hole (consequence of initial conditions)
- Can significant large-scale poloidal field be generated solely by the MRI within turbulent disks?
 - In simulations some coherent initial poloidal field has been required;
 there is evidence for a dynamo process in disks, but the effect is
 mainly to sustain MRI
- How does the presence or absence of a jet relate to the overall state of the disk and its magnetic field?
 - Funnel field (and jet) strength are related to total pressure in nearhole disk; rough equipartition
 - Initial collimation provided by disk and corona pressure

Summary

- The MRI leads to MHD turbulence that transports angular momentum, allowing disks to accrete
 - Stress determines the pressure, not the other way around. It is still uncertain what determines turbulent field strengths except that generally field energy is subthermal; field topology, net field, resistivity and Prandtl number....
 - "α Begone!" (Blaes 2007)
- Poynting flux jet power comes from black hole spin
 - Under what circumstances does required axial field become established?
 - Can net field be transported inward? Disk transport seems inefficient but coronal mechanisms may be present
 - Large scale fields also seem to be required for jets that originate in disks