

Anne Medling UC Santa Cruz

with Claire Max (UCSC), Vivian U (IfA/UCR), Javiera Guedes & Lucio Mayer (ETH)

Where are we going with this?

- Comparing gas and stellar kinematics on 20-80pc scales
 - Can nuclear disks help binary black holes merge?
- Looking for AGN activity (or lack thereof) in the cores of gas-rich mergers
 - Seeing dual black holes vs. dual AGN
- How do mergers fall on BH scaling relations (and what will it tell us about BH-host coevolution)?

mergers - (U)LIRGs - adaptive optics

INTRO

Gas-rich mergers can trigger AGN and starbursts

- As gas funnels to the center, fuels
 AGN or star
 formation
- Feedback and winds then may blow out the rest of the gas at some time

T. Di Matteo

Gas-rich mergers can trigger AGN and starbursts

Open questions:

- When do we see two AGN?
- What dictates amount of star formation vs. AGN activity?
 - Which uses up or destroys the gas reservoir?

NGC 6240

BH-host scaling relations

Tremaine et al. 2002

- Galaxy and BH both grow during a merger; properties track each other
- But what do they look like during a gas-rich merger?

(It's hard to measure these quantities during a merger though)

Great Observatory All-sky LIRG Survey

We pull our sample from GOALS:

- 200+ brightest IR-selected galaxies
 - (Ultra-) Luminous InfraRed Galaxies (U)LIRGs
- Redshift < 0.1
- Generally bright in the IR because of either starburst or AGN heating dust (or both)
- Span all nuclear spectral types and merger stages -> we select late-stage mergers

Understanding Cores in (U)LIRGs: High Spatial Res is Key!

- Resolution of HST ~ .05"; Keck AO matches this
- Dusty→ move to NIR

15 (U)LIRGs - IFU spectroscopy - near-IR

SAMPLE & DATA

Observing Program

OSIRIS + Keck LGS AO

 High spatial resolution IFU spectroscopy at 0.035 and 0.1 "/pixel scales)

A Typical K-band Spectrum

ubiquitous - stars and gas - predicted by simulations

NUCLEAR DISKS

We see lots of strong rotation!

NGC2623 H₂ velocity, stellar velocity

Velocity colorbar = [-400,-100] km/s

Gas and stars both show similar rotation

MCG+08

continuum flux, Bry velocity, stellar velocity

Velocity colorbar = [-150,300] km/s see AMM+13 in prep

Nuclear Disks in Simulations

- ~300 pc scale disks seen in major merger simulations (e.g. Mayer+07)
- Plausibly important for merging of binary BHs

Disk Sizes

V/σ of Disks

We see disks in every system

- These gas disks seem to form stars (and stars seem to stay in disks)
- Simulations show that disks form, disrupt and reform
 - Following gas and stellar disk sizes and v/sigma can indicate formation/history of disk
- Plan to compare sizes and other parameters across a wider range of merger phase

dynamical masses - scaling relations

BH MASSES

NGC 6240

- X-ray confirmed dual AGN (Komossa+03)
- 2 nuclei ~ 700pc apart

Hubble Heritage Image

ACS I-band

Keck K-band w/LGS AO

Steep velocity gradient in stars

- Keplerian rotation?
- Use two BH mass measurement methods as a test of assumptions
 - Assume thin disk for lower mass limit
 - Incorporate dispersion (assume virialized) for upper limit

NGC 6240's south black hole

NGC6240

Stellar velocities from OSIRIS in 2-d region around BH

$$v = \sqrt{\frac{GM_{encl}(r)}{r}}$$

$$M_{encl}(r) = M_{BH} + \rho_0 r^{\gamma}$$

$$M_{BH} = 8.7 \pm .3 * 10^8 M_{\odot}$$
 (lower limit)

See AMM+11

NGC 6240's south black hole

JAM Modeling (Cappellari 2008)

$$v_{rms} = \sqrt{v^2 + \sigma^2}$$

 $M_{BH} = 2.0 \pm 0.2 * 10^9 M_{\odot}$ (upper limit)

Finding Dual Black Holes

- NGC 6240 is an X-ray confirmed dual AGN (Komossa+03)
- But with AO we can use kinematics to locate the black holes independent of whether or not they are AGN!

Keck K-band w/LGS AO

BH-host scaling relations

BH-host scaling relations

More points coming!

population studies - individual star clusters - earlier mergers

FUTURE WORK

Future Plans

- Adding to our population studies; increased statistics
- Expanding the population to cover earlier stages of merging
- Comparing nuclear disk properties to a wider variety of simulations
- Stellar population synthesis on individual star clusters

Conclusions

- AO is a powerful tool to locate quiescent black holes in mergers
- Nuclear disks are common features in (U)LIRG mergers
- Gas-rich mergers may lie above BH scaling relations
- Rich dataset for showing outflows and AGN feedback

thank you!

THE END