AGN Outflows in Dynamic ICMs: Winds and Twists

Tom Jones University of Minnesota

Pete Mendygral (UMN, Cray Computer) David Porter (UMN) Klaus Dolag (MPA, U Munich)

Outline

•AGN outflows (radio jets) are major dynamical & thermodynamical ICM components

•AGN/ICM interactions may provide insights to AGN & ICM physics

•Is binarity in radio mode AGNs useful as a tool in these investigations?

Dave DeYoung was keenly interested in AGN/ICM interactions (from 2007 Anchorage Workshop)

3D Buoyant Bubble – AGN-made ICM cavity: Role of the ICM magnetic field

Radio AGNs are Common in Clusters

Xray w/ radio contours Croston +

Cluster outskirts

X-ray (red) & radio (green) Rudnick +

Importance: Energy Input to ICM Can Be Large

FIG. 6.—Cavity power of the central AGN vs. the X-ray luminosity of the ICM inside the cooling radius that must be offset to be consistent with the spectra $(L_{\rm ICM} = L_{\rm X} - L_{\rm cool})$. The symbols and wide error bars denote the values of cavity power calculated using the buoyancy timescale. The short- and mediumwidth error bars denote the upper and lower limits of the cavity power calculated using the sound speed and refill timescales, respectively. Different symbols denote different figures of merit: *circle:* well-defined cavity with bright rims; *triangle:* well-defined cavity without bright rims; *square:* poorly defined cavity. The diagonal lines denote $P_{\rm cav} = L_{\rm ICM}$ assuming pV, 4pV, or 16pV as the total enthalpy of the cavities.

Binary Black Holes & Dual AGN

Importance: Dynamics Reflect ICM Motions/Structure

Some Known to be Binary (Many Might Be)

Binary Example: 3C 75

A400 NGC 1128 ~ 8kpc separation

Red (visible) Blue (radio)

Binary Example: AS345

Figure 1. The binary radio galaxies J0321–455N and J0321–455S. 2.4-GHz radio contours are overlaid on a combined *R*- and *V*-band optical image of the field made using the ANU 2.3-m telescope. The contours correspond to 4, 16, 64 and 128 times the rms image noise of 60 μ Jy beam⁻¹. Spectroscopy (see Table 2) reveals that the objects labelled c and d and the radio galaxies are at about the same redshift.

102

Binary Example: FIRST J1643+3156

grey scale flux range= -1.06 13.03 mJy/beam peak flux density=13.03 mJy/beam, beam size=198x169 mas first contour level=0.6 mJy/beam Pol line 1 arcsec=5 mJy/beam

11/29/2012

Binary Black Holes & Dual AGN

9

Given the commonality of AGNs in ICMs The Challenge:

Decipher complex morphological (& other) clues to establish useful dynamical diagnostics:

E.G.,

ICM flow properties ICM magnetic field properties Jet physical properties Define key Jet/ICM interaction parameters

We've mostly explored through simulations

Previous Generation Jet Simulations in Static ICMs (3D MHD) e.g., O'Neill, Mendygral & Jones 2009

•Bipolar, collimated Mach 30 (internal) jet outflows $L_{jet} = 1.2 \times 10^{46} \text{ erg/s}$ (combined jets at full power) Steady or intermittent (50%, 26 Myr cycle) $r_{jet} = 3 \text{ kpc}$ $\rho_{jet}/\rho_0 = 0.01$ Toroidal jet B field at source ($\beta = P_g/P_M \simeq 100$; $B_j \simeq 10 \mu G$)

 Passive `CR' electrons, shock injection & DSA Adiabatic & radiative (synch, IC) losses

•AGN at center of ~ $4x10^{14}$ M_o cluster (NFW potential) Static ICM, kT_{ICM} ~3keV (~ Perseus) Double β profile with random density fluctuations Tangled ICM magnetic field < β_{plasma} >~ 100 (range ~ 30:1000) (<B_{core}> ~ 7µG) No radiative cooling of ICM

Illustration: Intermittent Jets

Magnetic Field Intensity

Blue (AGN plasma) Red (ICM plasma)

Synthetically Observed' & Actual Energetics Comparisons Good to ~ 50%

On the Other Hand: Real ICMs are Dynamic:

"Bullet Cluster" 1E 0657-56

Two Classes of More Realistic Simulations:

•AGN Jets in simple, but dynamic media

•AGN Jets in self-consistent ICMs

Example: Bipolar AGN Jets in a Turbulent ICM Wind: Narrow Angle Tail (NAT) FRI Source (Porter + 2009)

•Code: MHD TVD with passive CR electrons (CGMV)

•Box: 1 Mpc x 1 Mpc x 200 kpc 2000x2000x400 =1.6x10⁹ zones $\Delta x = 0.5$ kpc

- Jet Power: 5x10⁴⁴ erg/s
- •Jet Radius: 5 kpc
- •Bending Radius: ~ 20 kpc (M_i/M_{ICM} ~ 2)
- •Simulation Duration: 215 Myr
- •Tail Length: ~ 600 kpc

NAT Simulation Setup:

Emergent Jets:

Kinetic Energy Deposition

Vorticity (Shear, turbulence)

Volume Rendered

t = 215 Myr

Magnetic Field Injection/Amplification

Volume Rendered

t = 215 Myr

Synthetic Synchrotron Emission

178 MHz 215 Myr

11/29/2012

Self-Consistent ICM Example:

Intermittent Bipolar AGN Jets in a Nominally Relaxed ICM Extracted from Cosmological Simulation (SPH MHD): Wide Angle Tail (WAT) FR II Source Mendrygral + 2012

- •Code: MHD TVD (grid-based) with passive CR electrons (CGMV)
- •Box: 1 Mpc³; 1008³ zones

 $\Delta x = 1 \text{ kpc}$

- •Jet Power: 6x10⁴⁴ erg/s
- •Jet Radius: 3 kpc
- Jet Velocity: $v_i = 10^4$ km/s
- Jet Density: $\rho_i = 4x10^{-28} \text{ g/cm}^3$
- •Toroidal Magnetic Field (β = 1, 10, 100)
- •Cluster (7 Gyr since major merger): Mass = 1.5 x 10^{14} M_o ; kT ~ 1.5 keV; c_s ~ 650 km/s B_{core} ~ 5 μ G

Overview of Selected Cluster

z = 0

Cluster Magnetic Field

Initial ICM Gas Entropy Slices with Velocity Vectors

Cross winds up to 450 km/sec

Bar shows jet axis

Evolution of AGN Cavity

Note distortions From axial symmetry

('Launch cylinder' visible)

Synthetic X-Ray Image (divided by β -law)

11/29/2012

Binary Black Holes & Dual AGN

Synthetic Radio Images

11/29/2012

Back to Binary AGNs: 3C 75

Blue (X-ray) Pink (radio)

Model 3C 75 as Pair of Orbiting BHs in Cross Wind

Yokosawa & Inoue v_w = 1100 km/s (almost in plane) Orbital diameter 8kpc Orbital period 110 Myr

[Vol. 37,

Fig. 1. The coordinate system; x-y plane is the orbital plane of the binary galaxy and xaxis is the major axis of the orbit. The plane of the sky is S and *i* is the inclination of the orbital plane O from the line of sight.

658

General idea of Expected Behavior (Yokosawa + Ballistic Model)

Fig. 2. Jet trajectories produced by the binary orbiting galaxy. φ_{phase} is the orbital phase of the galaxy. The intergalactic wind flows to the left direction.

Our MHD Simulation Set Up:

Box: 500 kpc X 250 kpc X 500 kpc (1084 X 542 X 1084) grid $\Delta x = 0.5$ kpc

ICM:

 $\rho_{ICM} = 5 \times 10^{-27} \text{ g/cm}^{3}$ $P_{ICM} = 1.3 \times 10^{-11} \text{ dyne/cm}^{2}$ $v_{x} = 1100 \text{ km/s} (v_{y} = v_{z} = 0)$ $v_{x}/c_{s} = M_{ICM} = 1.67$ **Turbulent ICM:** $\langle v_{turb} \rangle_{RMS} = 150 \text{ km/s}, \langle B_{turb} \rangle_{RMS} = 2 \mu \text{G}$ outer scale 30 kpc Jets: (paired & orthogonal to AGN orbit) $r_{j} = 3 \text{ kpc}$ $v_{j} = 1.5 \times 10^{4} \text{ km/s}$ $P_{j} = P_{ICM} = 1.3 \times 10^{-11} \text{ dyne/cm}^{2}$ $Q_{z} = 5 \times 10^{-28} \text{ g/cm}^{3}$

$$\rho_{j} = 5 \times 10^{-28} \text{ g/cm}^{3}$$

$$v_{j}/c_{sj} = M_{j} = 7.2$$

$$\beta = P_{g}/P_{M} = 10$$

$$L_{j} = 5 \times 10^{43} \text{ erg/s}$$
orbital diameter = 12 kpc (x-y plane)
orbital period = 91 Myr

Crude Comparison

Simulation: Jet mass fraction

3C 75: radio in pink

Roughly similar scales

t = 215 Myr (~ 2 binary orbits)

Tail lengths ~ 300 kpc

Jet mass fraction 'color'

Jet break :

 $l_b \sim (M_j/M_{ICM})^2 r_j$

Varies during Orbit ($\mathbf{v}_{w} + \mathbf{v}_{o}$)

 $< l_b >$ ~ 60 kpc

11/29/2012

X

Evolution of Mass Fraction

Thanks!