Are AGNs more likely to occur in galaxy mergers?

Claire Max
UC Santa Cruz
Center for Adaptive Optics
November 29, 2012

Some perspectives and a review of the literature

- Binary black holes and dual AGNs are of strong inherent interest
 - High-energy astrophysics, accretion disk physics, jets, particle acceleration, ...
 - Gravitational physics, gravitational radiation, ...
- Most of the papers at this workshop address these questions
- This talk is my attempt to put dual AGNs into a larger context: how do the AGN and the dual AGN phenomena connect to galaxy evolution?

How do AGNs and Dual AGNs connect with larger issues of galaxy evolution?

- Co-evolution of galaxies and supermassive black holes:
 - Almost all galaxies with spheroids have supermassive black holes in their cores
 - Properties of spheroids and black holes are well correlated
 - Why?
- Do both spheroids and black holes grow
 - a) during galaxy merger events, or
 - b) via secular accretion of cold gas? [or both]
- If merger events are important on a large scale, we should see correlation between AGNs and mergers
- Do we see this ??

Outline

- 1. Introduction: framing the question
- 2. Surveys on the association of AGNs with galaxy mergers
 - Optical, mid-IR, soft and hard x-ray surveys don't agree
 - Selection effects very important
 - Is AGN luminosity the most important parameter?

3. Conclusions

Key Issues

1. Out of a sample of all AGNs:

- Compared with inactive galaxies, are AGNs more likely to be found in galaxy mergers?
- What fraction of all AGNs are dual AGNs?

2. Out of a sample of all galaxy mergers:

- Is the AGN fraction larger than in isolated galaxies?

Key Issues

1. Out of a sample of all AGNs:

- Compared with inactive galaxies, are AGNs more likely to be found in galaxy mergers?
- What fraction of all AGNs are dual AGNs?
- Answers depend on how sample is selected. Many samples show no correlation of AGNs with mergers.

2. Out of a sample of all galaxy mergers:

- Is the AGN fraction larger than in isolated galaxies? Yes.

In samples of galaxy pairs, AGN fraction increases as separation decreases

SDSS mergers 0.01< z < 0.2 Ellison et al. 2011

BAT and SDSS AGNs, z < 0.05 Koss et al. 2012

Strongly suggests that merger events play role in triggering AGN / dual AGN activity

Be careful what question you are asking

- Let's say that there are 2 potential methods for AGN fueling:
 - 1. Accretion of cold gas from the cosmic web
 - 2. Mergers of gas-rich galaxies
- Expected to have different dependence on z, galaxy mass, and to produce different host-galaxy morphology
- It is easy to imagine that in an epoch where cold-gas accretion dominates, you would find:
 - AGNs and inactive galaxies have almost the same probabilities of being found in galaxy mergers, BUT
 - For galaxies the are in mergers, the AGN fraction is higher

Outline

- 1. Introduction: framing the question
- 2. Surveys on the association of AGNs with galaxy mergers
 - Optical, IR, soft and hard x-ray surveys don't agree
 - Selection effects very important
 - Is AGN luminosity the most important parameter?
- 3. Conclusions

Some surveys asking what fraction of <u>all</u> AGNs are in mergers: higher redshifts

Optical + x-ray selection: No clear association of AGNs, mergers for z > 0.2

- Kocevski et al. 2012 1.5 < z < 2.5
 - Chandra x-ray selected AGNs, $L_x = 10^{42} 10^{44}$ ergs/s
 - AGN host galaxies have same merger rate as controls
- Cisternas et al. 2011 0.3 < z < 1.0
 - XMM x-ray selected AGNs, median $L_x = 10^{43.5}$ ergs/s
 - AGN host galaxies have same distortion fraction as controls
- Optically selected quasars 0.2 < z < 0.7
 - SDSS-selected for double [OIII] lines, $L = 10^{43} 10^{45}$ ergs/s
 - < 0.5% of quasars are in spatially separated galaxy pairs

Some surveys asking what fraction of all AGNs are in mergers: lower redshifts

The two lowest-redshift surveys find that AGNs are more likely than controls to be in a merger

- Koss et al. 2010 z < 0.05
 - <u>Ultra hard x-ray selected (BAT) AGNs</u>, L_x ~ 10⁴³ ergs/s
 - AGN merger rate w/in 30 kpc = 24%, controls = 1%
- Ellison et al. 2011, 0.01 < z < 0.2
 - Optically selected AGNs and Quasars from SDSS
 - Fraction of AGNs with a close companion within 10 kpc and 200 km/s is 2.5 times higher than control sample

But beware of selection effects: each sample is seeing different kind of AGN

- Optical selection (Yan et al. 2011)
 - AGN emission lines often hidden by star formation or dust
 - Requires high SNR optical spectra to subtract host galaxy light
- Mid-IR selection (Assef, Mateos, Stern, ...)
 - Interlopers include other luminous IR galaxies, hi-z galaxies
 - Gas-rich mergers more likely to be strong IR emitters
- X-rays < 10 keV (Yan et al. 2011)
 - Substantial AGN population lost due to heavy absorption by gas
- Ultra-hard x-rays (14-194 keV) (Koss et al.)
 - Unbiased sample of local AGNs, but limited to z < 0.1
 - Still misses the truly Compton-thick AGNs

One way around this: try to combine samples chosen using multiple methods

Treister et al: Fraction of AGNs in mergers is very strong function of luminosity

 Combined samples from SDSS, mid-IR (2MASS & Spitzer), x-ray (Chandra + XMM), ultra-hard x-ray (SWIFT-BAT)

Conclusions:

- Redshift-independent correlation between AGN luminosity and fraction of AGNs in major mergers
- 50% of black hole growth by mass is associated with major mergers
- Major merger appears to be required for an AGN to reach the highest luminosities

Difference with surveys showing no AGN-merger correlation: due to mid-IR-selected AGNs?

Conclusions

- Strong hints that mergers play key role in triggering some, but not all, kinds of AGN activity
 - Need more work to quantitatively delineate which kinds
 - Try to compensate for selection effects by including samples chosen at many different wavelengths
 - Treister's paper suggests that mid-IR-selected AGNs have high weight towards merger involvement
 - I suggest re-examining using WISE mid-IR AGN selection criteria
- If mergers trigger AGNs, there should be two black holes involved even when we only see one of them
- See Anne Medling's and Vivian U's talks for how to characterize 2nd black hole even when it isn't an AGN