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Separation Between SMBHs



The mass deficit is defined as

Mass Deficits

Mdef ≡ 4π

� rmax

0
[ρinit(r)− ρ(r)] r2dr.



Nuclear Structure of Bright Galaxies

Mgal ≾ 1010 MSun Mgal ≿ 1010 MSun 

core

Graham (2011)



Graham 2004 ApJ, 648, 976

Observed Mass Deficits

Graham (2004) 



Stalling of the Binary in Spherical Galaxies

DM, Mikkola & Szell (2007) 



Spherical galaxy: 
Stalling

Non-spherical 
galaxy: No stalling?

Khan et al. (2011) 

Preto et al. (2011) 



• Brownian motion of the binary (enables interaction with larger 
number of stars) 

• Non-stationary solution for loss-cone repopulation

• Secondary slingshot (stars interact with binary several times)

• Gas physics

• Perturbations to the stellar distribution arising from transient events 
(infall of large molecular clouds, additional minor mergers, …)

• Effects of non-sphericity on the orbits of stars in the nucleus

Possible Ways to Enhance the Hardening Rate



“Pyramid” Orbits



Centrophilic Orbits in the Merger Simulations?

increasing 
smoothness 
of the galaxy 
model

Antonini, Vasiliev & DM (2013) 

∴  Not clear that efficient hardening of the binary is due to the

     presence of centrophilic orbits. 
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II. Binary Evolution in Rotating Nuclei

Evolution of a binary SMBH can be described in 
terms of dimensionless rate coefficients: 

H ≡ σ

Gρ

d

dt

�
1

a

�

K ≡ de

d ln(1/a)
=

σ

GρaH

de

dt

(energy)

(eccentricity)

For a binary SMBH in an isotropic nucleus, K is 
small (K ≾ 0.15) and positive (eccentricity increasing).

Quinlan (1996) 

Mikkola & Valtonen (1992) 



In a rotating nucleus, 
changes in the binary’s 
eccentricity can be 
much larger.

Sesana et al. (2011) 

counter-rotating nucleus

co-rotating nucleus



In a rotating nucleus, the number of retrograde and 
prograde encounters with the binary is different.

•Stars on prograde orbits interact strongly with the binary; 
   stars on retrograde orbits avoid ejection during their initial
   encounter.
•If the binary is even mildy eccentric, the torque it exerts on
  a star can cause its orbit to “flip,” from retrograde to prograde
  (DM, Gulandris & Mikkola 2009).



Initial vs final stellar 
orbits in scattering 
experiments

prograde

retrograde

prograde retrograde
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Rasskazov & DM (2012) 



In a rotating nucleus, the number of retrograde and 
prograde encounters with the binary is different.

•Stars on prograde orbits interact strongly with the binary; 
   stars on retrograde orbits avoid ejection during their initial
   encounter.
•If the binary is even mildy eccentric, the torque it exerts on
  a star can cause its orbit to “flip,” from retrograde to prograde
  (DM, Gulandris & Mikkola 2009).
•When such a star is finally ejected, it is likely to be on a prograde
  orbit; it has experienced a net increase in L that is in the same
  direction as the binary’s L.

∴ The binary’s L decreases, i.e., its eccentricity increases.



In a rotating nucleus, 
changes in the binary’s 
eccentricity can be 
much larger.

Sesana et al. (2011) 

counter-rotating nucleus

co-rotating nucleus



Angular momentum is a vector, and change of the 
binary’s L implies changes also in its orbital plane.

Diffusion coefficients:

R1 ≡ σ

Gρa
�∆θ�

R2 ≡ M12

m�

σ

Gρa
�∆ϑ2�

(drift)

(diffusion) Lbinary

“Rotational Brownian motion”
Debye (1913, 1929) 



Second-order rotational 
diffusion coefficient:  

  ●   M12/m✶ = 164
  ●   M12/m✶ = 328
  ●   M12/m✶ = 655

     ≈ 30-60 for “hard,”
         equal-mass binaries 

R2 ≡ M12

m�

σ

Gρa
�∆ϑ2�

R2 ∝ q−1(1− e2)−1

q ≡ M2/M1 ≤ 1

Milosavljevic & DM (2001) DM (2002) 



The first-order rotational diffusion coefficient:

R1 ≡ σ

Gρa
�∆θ�

is zero, by symmetry, in a non-rotating nucleus. 

But in a rotating nucleus, one expects the binary’s 
L to align with that of the stars, at a rate that is 
independent of m★/M12.



For instance, assume that stars are ejected from the binary 
in essentially random directions.

 The average change in angular momentum of stars that 
impinge on the binary is then

�∆L�� = �L�,final −L�,initial�

≈ −�L�,initial�

Since the change in the binary’s L is opposite in sign to 
⟨ΔL✶⟩, the binary’s axis of rotation tends to align with that 
of the nucleus.



Evolution of the angle θ 
between Lbinary and Lcusp.

Gualandris et al. (2012) 

R1 ∝ sin θ
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Coalescence of two SMBHs results in a 
spinning remnant.

The spin, S, can continue to evolve due to:

•Accretion of gas
•Capture of stars

•Torquing by a gas disk
• Torquing by stars

III. Post-Binary Evolution in Rotating Nuclei

} changes the magnitude, 
direction of S

} changes only the direction of S



Lense-Thirring torques cause orbital angular 
momenta, Lj, to evolve as 

L̇j = ωj ×Lj , ωj =
2GS

c2a3j (1− e2j )
3/2

.

Ṡ = ωS × S, ωS =
2G

c2

�

j

Lj

a3j
�
1− e2j

�3/2

III. Post-Binary Evolution in Rotating Nuclei

The same torques act back on the SMBH, 
causing its spin, S, to evolve as 



J = S +
�

j

Lj ≡ S +Ltot

|S| ≡ S

|Lj | ≡ Lj , j = 1, . . . , N

ωS

Conserved quantities: Not conserved: 

L̇j = ωj ×Lj , ωj =
2GS

c2a3j (1− e2j )
3/2

.

Ṡ = ωS × S, ωS =
2G

c2

�

j

Lj

a3j
�
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�3/2

Ltot,S

III. Post-Binary Evolution in Rotating Nuclei

DM & Vasiliev (2012) 



Spin evolution I.
Damped 
precession



Spin evolution II.
Sustained 
precession



III. Post-Binary Evolution in Rotating Nuclei

There is a radius around the SMBH beyond 
which changes in the Lj are dominated by star-
star, rather than spin-orbit, torques. 

The “radius of rotational influence,” aK, of a 
SMBH is defined by

Beyond this radius, the stellar Lj evolve stochastically, 
on the “resonant relaxation” timescale.

rg ≡ GM•
c2

.

DM & Vasiliev (2012) 

�
1− e2

�3
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Radius 
(pc)

Radii associated 
with SMBH spin

DM & Vasiliev (2012) 



Response of χ≡ S/(GM●/c2) 
to torquing by stars, some of 
which lie outside the radius 
of rotational influence. 

           m✶ = 0.1 M⊙

           m✶ = 1.0 M⊙

           m✶ = 10. M⊙

DM & Vasiliev (2012) 



Accretion disk Stars

•Dissipative
•Gas near SMBH in thin
   disk
•Torque determined by 
   gas at ~warp radius*

•S aligns with Lgas 

•Dissipationless
•Stars near SMBH can
   have any distribution
•Torque determined by
   stars at ~rotational
   influence radius*
•S may, or may not, align
  with Lstars 
   

*after matter near the SMBH has aligned with it



S-shaped radio 
source

Condon & Mitchell (1984)


