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] Separation Between SMBHSs
E // /,/’-—\‘\\ \\\ ; [ [ [ [ | [ [ [ [ | [ [ [ [
] 10 L S Giretlar Hi
e . - S __- eccentric B
E \\\ S h ~ /// /,l E : ‘\,| :
__ \\\ S=== /// __ 1 £ I i
= : B
& circular — - I'l a
Condlnann o nnllnanallnnnalnnd 8 B I 1
—i1G =5 5 SRl S E
5 © - b §
_I I | -1 | 1 | | [ | 1 [ [ | I I_ N®) B III 5
= = 0.01 & ',,ﬂ a, E
C ] ; i ]
— & 5 ] B |"|'|I"1‘l'“|||u',| N ]
C )/ NS | P I,’ ‘"' lm"{'lilh‘ ; .
= / L Y O Oo»] L " b ‘I"\ "‘ \ =
i LD i ' S MR :
- ‘. | C o :
:_ _: ’]O—4 | | | | | | | | | | | | | |
N el ] 0 S0 1000 a0l
= i time
_I | | | | | | ] | | | ) | | I_

B - g 5 e Gualandris & DM (2012)



Density

Mass Deficits

original

final

: core radius

Mass Deficit The mass deficit is defined as

Maes = 47T/ [0inis (1) — p(7)] rdr.
0




Nuclear Structure of Bright Galaxies
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Observed Mass Deficits
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Stalling of the Binary in Spherical Galaxies
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Possible Ways to Enhance the Hardening Rate

* Brownian motion of the binary (enables interaction with larger
number of stars)

 Non-stationary solution for loss-cone repopulation
* Secondary slingshot (stars interact with binary several times)
» (as physics

» Perturbations to the stellar distribution arising from transient events
(infall of large molecular clouds, additional minor mergers, ...)

» Effects of non-sphericity on the orbits of stars in the nucleus
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Antonini, Vasiliev & DM (201 3)

Centrophilic Orbits in the Merger Simulations!
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Not clear that efficient hardening of the binary is due to the

presence of centrophilic orbits.
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. Binary Evolution in Rotating Nuclel

Evolution of a binary SMBH can be described in
terms of dimensionless rate coefficients:

o b Al
= _—— | = ener
B = (a> (energy)
d d =
1= : L (eccentricity)

din(1/a)  GpaH dt
For a binary SMBH in an isotropic nucleus, K Is
small (K = 0.15) and positive (eccentricity increasing).

Quinlan (1996)
Mikkola & Valtonen (1992)
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In a rotating nucleus,
changes in the binary’s
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much larger.

counter-rotating nucleus

co-rotating nucleus



In a rotating nucleus, the number of retrograde and
prograde encounters with the binary is different.

* Stars on prograde orbits interact strongly with the binary;
stars on retrograde orbits avoid ejection during their inrtial
encounter.

*|f the binary Is even mildy eccentric, the torgue it exerts on

a star can cause its orbit to “flip,” from retrograde to prograde
(DM, Gulandris & Mikkola 2009).
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In a rotating nucleus, the number of retrograde and
prograde encounters with the binary is different.

* Stars on prograde orbits interact strongly with the binary;
stars on retrograde orbits avoid ejection during their inrtial
encounter.

*|f the binary Is even mildy eccentric, the torgue it exerts on
a star can cause its orbit to “flip,” from retrograde to prograde
(DM, Gulandris & Mikkola 2009).

*\When such a star is finally ejected, it is likely to be on a prograde
orbit; It has experienced a net increase in L that is in the same
direction as the binary’s L.

Sle Sliar s L decreases, L.e,, Its eccentricity ineredse s
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changes in the binary’s
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Angular momentum Is a vector; and change of the
binary's L implies changes also in its orbital plane.

Diffusion coefficients:

I = a B (i

M
o= —— " (Av%) [ClEEs)
i Gpa \

“Rotational Brownian motion”
Debye (1913, 1929)




Second-order rotational
diffusion coefficient:

M12 o) 2
Ry = A
e Gpa,< )

~ 30-60 for “hard,’
equal-mass binaries

o Mip/mx= 164 Ry o q_l(l o 62)_1

o Mi/mx = 328 qg=M>/M; <1
® Miz/mx = 655

Milosavijevic & DM (2001) DM (2002)



The first-order rotational diffusion coefficient:

o
— A\
Ry Gpa< )

IS zero, by symmetry, In a non-rotating nucleus.

But In a rotating nucleus, one expects the binary’s
L to align with that of the stars, at a rate that Is
independent of mx/Mi>.



For instance, assume that stars are ejected from the binary
in essentially random directions.

The average change in angular momentum of stars that
impinge on the binary is then

s — (L, 5.0 — Ly initial)
=~ — (L, initial)

Since the change in the binary’s L i1s opposite in sign to
(ALx), the binary’s axis of rotation tends to align with that
of the nucleus.
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Il. Post-Binary Evolution in Rotating Nuclei

Coalescence of two SMBHs results in a
spinning remnant.

e BIRsS, canl continle to evelve diete:

* Accretion of gas } changes the magnitude,
* Capture of stars direction of §

'Torqui.ng Dy a gas disk } changes only the direction of §
* Torquing by stars



Il. Post-Binary Evolution in Rotating Nuclei

Lense-Thirring torques cause orbrtal angular
momenta, Lj, to evolve as

2GS

cRaRl(IE= ol (2R

Lj :ijLj, Ly —

The same torques act back on the SMBH,
causing 1ts spin, S, to evolve as
_2G L;

S’——wSxS ws = —& =
9 /2
s




Il. Post-Binary Evolution in Rotating Nuclei

! 2 i
S:wsxS, wg = GZS /

2 7 O (1—6?)3/2

2GS

Li=w;x Lj, w;= 2ad(l — e2)3/2
Conserved quantities: Not conserved:
J:S+ZLjES+Lt0t LS
S| =S J =

lLj|=Lj, j=1,...,N DM & Vasiliev (2012)
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Il. Post-Binary Evolution in Rotating Nuclei

There Is a radius around the SMBH beyond
which changes in the L; are dominated by star-
star, rather than spin-oroit, torques.

The “radius of rotational influence,’ ax, of a
SMBH Is defined by

3 2 2
g 16x~ ( M. _ GM,
i () ~ N(a) (m> S

Beyond this radius, the stellar L; evolve stochastically,
on the “resonant relaxation” timescale.

DM & Vasiliev (201 2)
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| I I n Response of y= 8/(GMa/c?)
- e / to torquing by stars, some of

which lie outside the radius
of rotational influence.

£ = —— mx=0.1 Mo

EE——— . . . 4 DM & Vasiliev (201 2)
0 10 2x10 3x10 4x10 5%x10

time (yr)



Accretion disk

* Dissipative

* Gas near SMBH in thin
disk

BErclietdetermined by
gas at ~warp radius*®

*§ aligns with Lgas

Sialrs

* Dissipationless

* Stars near SMBH can
have any distribution

* Jorque determined by
stars at ~rotational
influence radius™®

*§ may, or may not, align
with L

*after matter near the SMBH has aligned with it
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