A Homogeneous Photometric Characterization of Sixteen M31 dSphs

Science with RGB stars and NOAO data.

Rachael L. Beaton, Steven R. Majewski, Richard J. Patterson, James C. Osthemier at the University of Virginia and the Spectroscopic & Photometric Landscape of the Andromeda Stellar Halo collaboration

19 June 2012, Great Andromeda Workshop
What do Observations tell us?

The MW galaxies seem to have a “common mass threshold” at $\sim 10^7 \, \text{M}_\odot$ (Strigari et al. 2008). This implies a “stochasticity” to galaxy formation at these mass scales. But this plot is really only “one data point” in our understanding of dSph systems within a larger halo.
Trends? Or Poor Statistics?

Based on a small number of M31 dSphs, we see some hints of differences between the two populations. Is this small number statistics? Or something real?

If its real, then this indicates a potential key difference in the formation of the MW and M31.
SPLASH: KPNO-4m+MOSIAC

Goal: Study M31 Substructure on par with MW Substructure

Two Phase Approach -
Photometry: This work.
Spectroscopy: Tollerud et al. 2012

For the SPLASH Halo Survey -
See Guthathakurta & Gilbert talks later today.

KPNO-4m+MOSAIC Imaging
36'x36' FOV

PAndAS Survey Map adapted from Richardson et al. 2011
Observational Reality

Example image from KPNO-4m+MOSAIC Survey of Andromeda VII.

Working with dSphs at M31 distance is akin to working with Ultra-Faint dSphs in the MW.

MW dwarfs dominate the star counts.

KPNO-4m+MOSAIC Imaging 36'x36' FOV
Washington+D51 Method

The DDO51 filter is centered on the MgH feature at 505.1 nm. This feature is sensitive to the surface gravity of the star.

For more details on method see: Majewski et al. 2000
Currently verifying with log(g) derived from R~22,000 spectra from APOGEE.
Wash+D51 photometry techniques provide significant leverage on dSph by (1) improving spectroscopic efficiency and (2) improving the background for profile fitting.
Wash+D51 photometry techniques reduces the background surface density and greatly improves the potential for profile fitting.

Keck+DEIMOS Results

1 hour of observation: precision velocities to ~few km/s to I=21.5 mag
See Tollerud et al. 2012 for Spectroscopy

Comparison radial profile from McConnachie et al. 2006

Wash+D51 photometry techniques reduces the background surface density and greatly improves the potential for profile fitting.
Color Magnitude Diagrams
Structure Fitting

- General Method: Power Law + Core with variable index

\[\Sigma_{PLC}(Q) = M \left(\frac{(v \times 1)}{\pi a^2 (1 - c)[1 + Q^2 - v^2]} + \Sigma_b \right) \]

- For comparison to MW in this work, we assume v = 2 or a Plummer Profile.
- Fit structures with numerical methods similar to those of Martin et al. 2008, Sand et al. 2009 and Munoz et al. 2012
 - Bayesian + Maximum Likelihood varying in 7 parameters
 - Explore parameter space using bootstrapping and Markov Chains
Plummer Profile Fits

AndI
AndII
AndIII
AndIV
AndV
AndVII
AndIX
AndX
AndXI
AndXII
AndXIII
AndXIV
AndXV
AndXVI
AndXVIII
AndXXII
Comparing the M31 dSph to the MW:
Comparing the M31 dSph to the MW:

Doubled the number of galaxies with well measured sizes and dispersions. Though, we have yet to probe the smallest galaxies in the M31 system.
Summary:

- The M31 system serves as a nearby laboratory for exploring the smallest galaxies.
- Washington+DD051 photometry is *observationally expensive*, but provides key leverage for exploring the M31 dSphs at a level comparable to the Milky Way.
- With this dataset detailed direct comparisons to the Milky Way are possible – but the intrinsically smallest galaxies remain hidden.