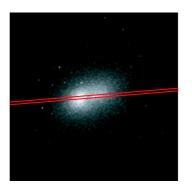
M31: black hole & dynamics of nucleus

John Magorrian

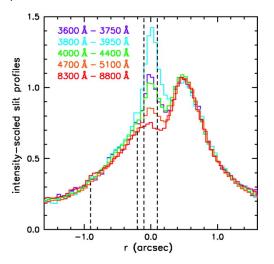
The Great Andromeda Galaxy Princeton, 19 June 2012



1. The black hole at the centre of M31 (just P3)

Photometry of P3

(Bender et al 2005)

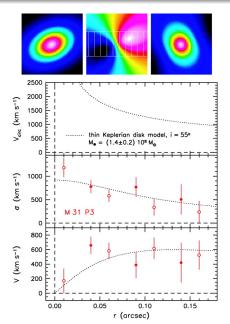

Distinct component in UV

Scale: P1-P2 separated by \sim 0.5" \sim 2 pc.

Distinct component in UV

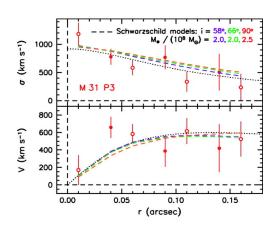
Scale: P1-P2 separated by $\sim 0.5" \sim 2$ pc.

Properties of P3 (Bender et al 2005, Lauer et al 2012)


Distinct from surrounding P1–P2 eccentric disc:

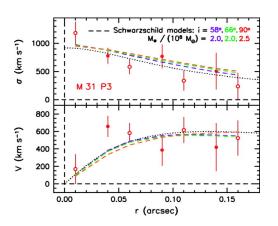
- 100's of A stars
- 100-200 Myr old
- \sim exponential profile, $r_0 \simeq 0.1$ " (0.4 pc)
- possible change for r < 0.03".

STIS spectra 350-500 nm includes Ca II H and K, Balmer lines.


Kinematics of P3: razor-thin disc models

(Bender et al 2005)

P3 kinematics described well by simple exponential disc model, $i=55^{\circ}$, $M_{\bullet} \simeq 1.4 \times 10^{8} \, M_{\odot}$.


Kinematics of P3: fat Schwarzschild models (Bender et al 2005)

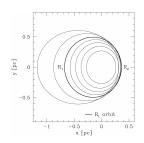
Best-fit model: thin disc around $M_{\bullet} = 1.4 \times 10^8 \, M_{\odot}$. 1- σ range of thick-disc models is $(1.1 - 2.3) \times 10^8 \, M_{\odot}$

Kinematics of P3: fat Schwarzschild models (Bender et al 2005)

Best-fit model: thin disc around $M_{\bullet} = 1.4 \times 10^8 \, M_{\odot}$. 1- σ range of thick-disc models is $(1.1 - 2.3) \times 10^8 \, M_{\odot}$.

2. The eccentric disc around the BH

(What's happening outside P3?)


Background

Origin of P1-P2 eccentric disc: suggestions

- ullet m=1 instability in stellar disc (Jacobs & Sellwood, Bacon et al, ...)
- stellar remnant of eccentric gas disc that fed BH (Hopkins & Quataert 2010)

...

Origin of P3: gas driven inwards P1–P2 potential, if Ω_p low enough? $_{\text{(Chang et al 2007)}.}$

Background

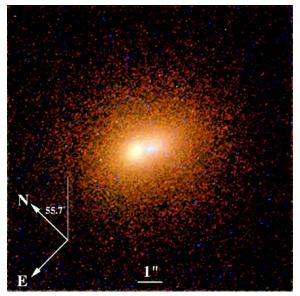
Origin of P1–P2 eccentric disc: suggestions

- ullet m=1 instability in stellar disc (Jacobs & Sellwood, Bacon et al, ...)
- stellar remnant of eccentric gas disc that fed BH (Hopkins & Quataert 2010)
- ..

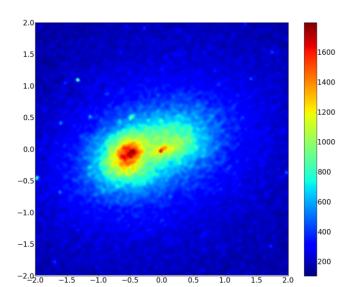
Origin of P3: gas driven inwards P1–P2 potential, if Ω_p low enough? $_{\text{(Chang et al 2007)}.}$

Motivation

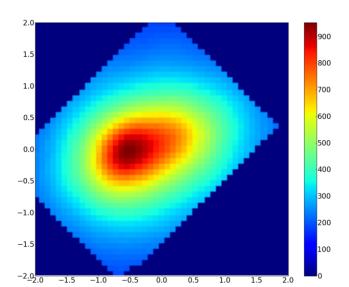
"The laws of physics are perfect, but the human brain is not."

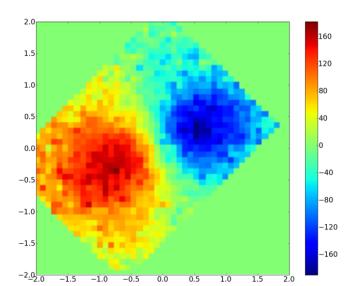

What constraints can we hope to extract from observations?

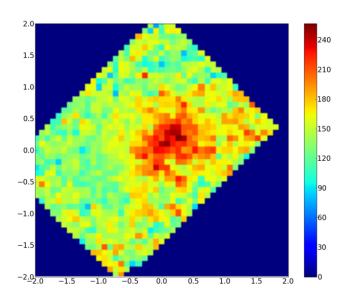
- 3d shape, orientation
- internal orbit structure
- measurement of M_● (indep of P3).

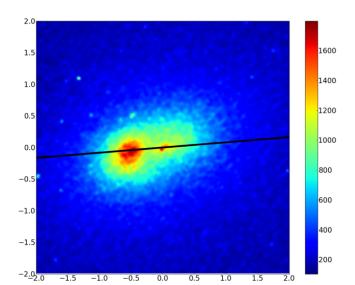


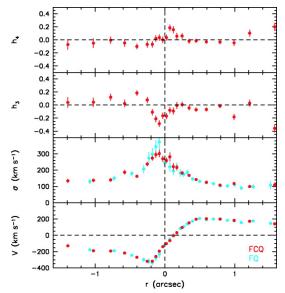
Data


WFPC photometry (Lauer et al 98):


WFPC photometry (Lauer et al 98):


OASIS fluxes (Bacon et al 2001):

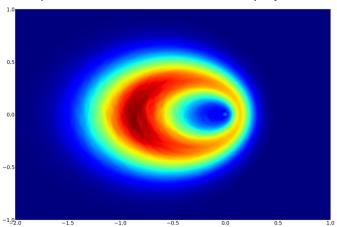

OASIS V (Bacon et al 2001):


OASIS σ (Bacon et al 2001):

STIS CaT long-slit kinematics (Bender et al 2005):

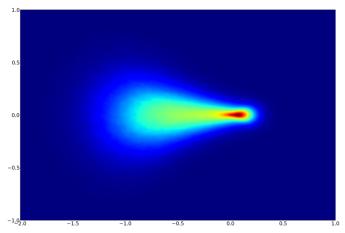
STIS CaT long-slit kinematics (Bender et al 2005):

Data

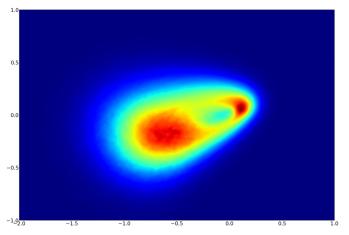

More kinematics from, e.g.,

- van der Marel et al. (1994) (long slit)
- Kormendy & Bender (1999) (long slit, maj)
- Statler+99 (1999) (FOC)

2a. Three-dimensional, massless discs


Purely Keplerian potential: DF $f(a, e, I, \omega, \Omega)$. Assume disc has biaxial (y, z) symmetry.

Clump of orbits around a = 1, e = 0.7 projected along z:


Purely Keplerian potential: DF $f(a, e, I, \omega, \Omega)$. Assume disc has biaxial (y, z) symmetry.

Clump of orbits around a = 1, e = 0.7 projected along y:

Purely Keplerian potential: DF $f(a, e, I, \omega, \Omega)$. Assume disc has biaxial (y, z) symmetry.

Clump of orbits around a = 1, e = 0.7 projected along los:

Euler angles: θ_l , θ_i , θ_a

(Peiris & Tremaine 2003)

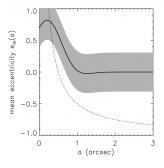
Peiris & Tremaine (2003) took

$$f(a,e,I) = g(a) e \exp \left[-\frac{[\mathbf{e} - \mathbf{e}_m(a)]^2}{2\sigma_e(a)^2} \right] \sin I \exp \left[-\frac{I^2}{2\sigma_I(a)^2} \right].$$

Free parameters:

3
$$g(a)$$
 radial sb profile
+2 $\sigma_I(a)$ thickness profile
+5 $\mathbf{e}_m(a), \, \sigma_e$ eccentricity distn.
+1 M_{\bullet}
+3 $(\theta_I, \theta_i, \theta_a)$ viewing angle
=14 (neglecting centre)

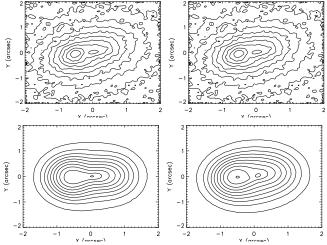
Fit: WFPC *V*-band photometry and KB99 (V, σ) long slit. **Predict:** KB99 LOSVD shapes; STIS, OASIS kinematics.

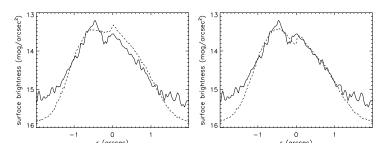

(Peiris & Tremaine 2003)

Some details:

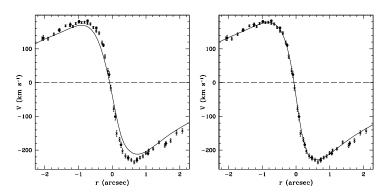
For disc thickness:

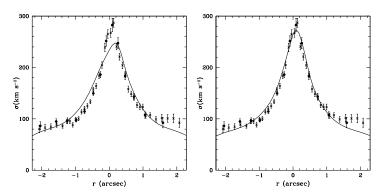
$$\sigma_I = \sigma_I^0 \exp(-a/a_I).$$


For $e_m(a)$, something of the form:

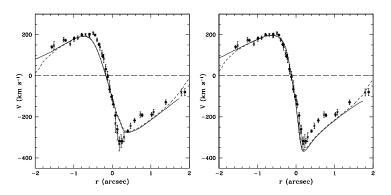


Motivation: encourage round P2, brighter than P1, with dip inbetween P1 and P2.

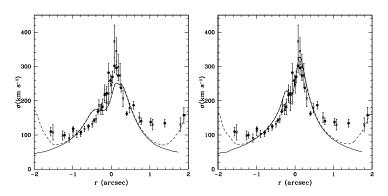

(Peiris & Tremaine 2003: results)


(Peiris & Tremaine 2003: results)

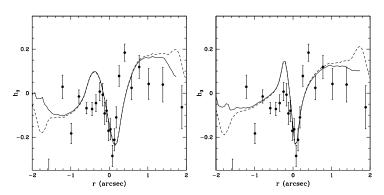
(Peiris & Tremaine 2003: results)



(Peiris & Tremaine 2003: results)


(Peiris & Tremaine 2003: results)

PT03 models *predict* the STIS kinematics pretty well (left: aligned, right: unaligned):


(Peiris & Tremaine 2003: results)

PT03 models *predict* the STIS kinematics pretty well (left: aligned, right: unaligned):

(Peiris & Tremaine 2003: results)

PT03 models *predict* the STIS kinematics pretty well (left: aligned, right: unaligned):

Peiris & Tremaine (2003) had

$$f = g(a) e \exp \left[-\frac{[\mathbf{e} - \mathbf{e}_m(a)]^2}{2\sigma_e(a)^2} \right] \sin I \exp \left[-\frac{I^2}{2\sigma_I(a)^2} \right].$$

To avoid need to think about $\mathbf{e}_m(a)$, try instead

$$f = \sum_{i} \mathbf{w}_{i} \exp \left[-\frac{(\mathbf{a} - \mathbf{a}_{i})^{2}}{2\sigma_{a}^{2}} \right] e \exp \left[-\frac{(\mathbf{e} - \mathbf{e}_{i})^{2}}{2\sigma_{\theta}^{2}} \right] \sin I \exp \left[-\frac{I^{2}}{2\sigma_{I,i}^{2}} \right].$$

Multiblob expansion

Blobs centred on fixed pts in (a, e) plane, plus $\sigma_{l,i} = \{15^{\circ}, 30^{\circ}, 45^{\circ}\}.$

Free parameters:

- $30 \times 9 \times 3$ ($n_a \times n_e \times n_i$) blob weights;
 - ×2 if counter-rotating orbits included;
- M.;
- orientation of disc on sky $(\theta_1, \theta_i, \theta_a)$.

multiblob expansion

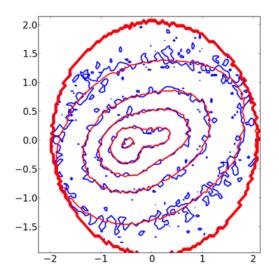
Peiris & Tremaine (2003) had

$$f = g(a) e \exp \left[-\frac{[\mathbf{e} - \mathbf{e}_m(a)]^2}{2\sigma_e(a)^2} \right] \sin I \exp \left[-\frac{I^2}{2\sigma_I(a)^2} \right].$$

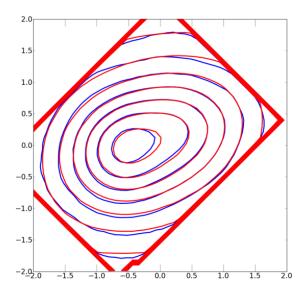
To avoid need to think about $\mathbf{e}_m(a)$, try instead

$$f = \sum_{i} \frac{\mathbf{w}_{i} \exp\left[-\frac{(\mathbf{a} - \mathbf{a}_{i})^{2}}{2\sigma_{a}^{2}}\right] e \exp\left[-\frac{(\mathbf{e} - \mathbf{e}_{i})^{2}}{2\sigma_{e}^{2}}\right] \sin I \exp\left[-\frac{I^{2}}{2\sigma_{I,i}^{2}}\right].$$

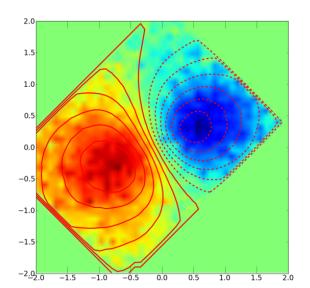
Multiblob expansion


Blobs centred on fixed pts in (a, e) plane, plus $\sigma_{l,i} = \{15^{\circ}, 30^{\circ}, 45^{\circ}\}.$

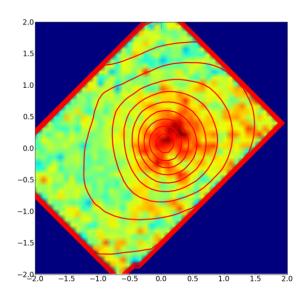
Free parameters:


- $30 \times 9 \times 3$ ($n_a \times n_e \times n_i$) blob weights;
 - ×2 if counter-rotating orbits included;
- M_•;
- orientation of disc on sky $(\theta_l, \theta_i, \theta_a)$.

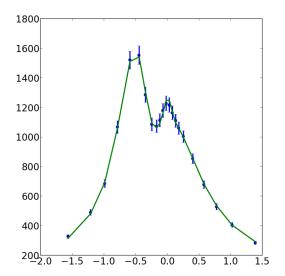
Multiblob fit to WFPC



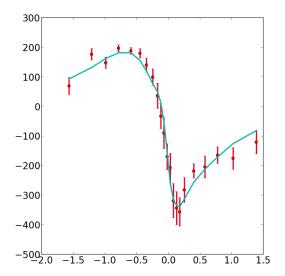
Multiblob fit to OASIS fluxes

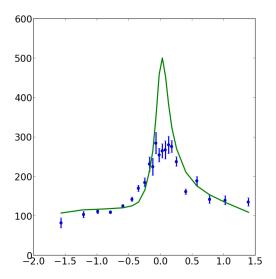


Multiblob fit to OASIS V

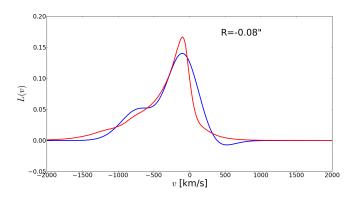


Multiblob fit to OASIS σ

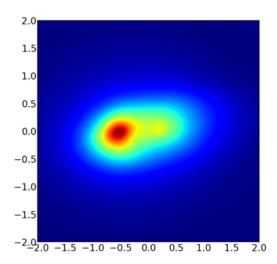



Multiblob fit to "STIS fluxes"

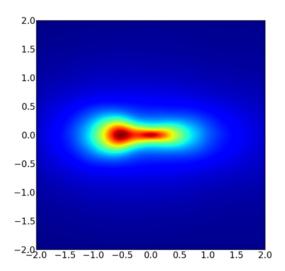
Multiblob fit to STIS "V"


Multiblob fit to STIS " σ "

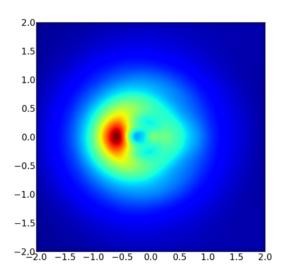
Why is the fit to σ so poor?

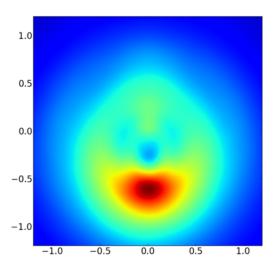

 ${\it V}$ and σ measured by fitting Gaussian model LOSVDs to spectra...

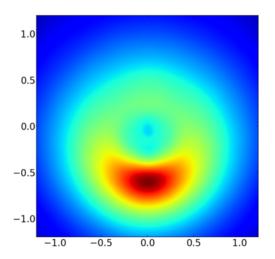
...my models assume V and σ are 1st and 2nd moments.



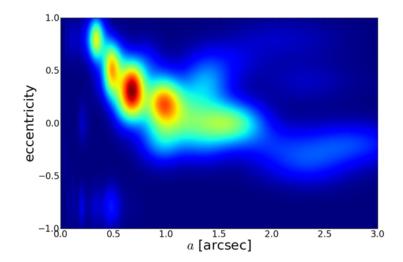
(not all LOSVDs agree this well...)


What does the disc look like? LOS projection:

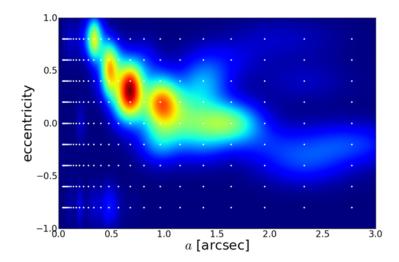

What does the disc look like? Edge-on:


What does the disc look like? Face-on:

What does the disc look like? Face-on:

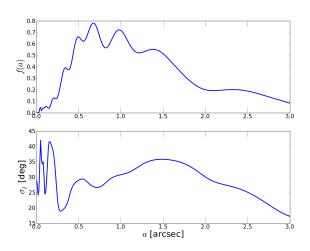


What does the disc look like? Face-on:

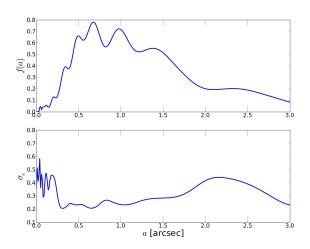


multiblob expansion results

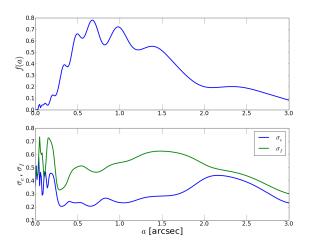
Best-fit $M_{\bullet} \simeq 10^8 \, M_{\odot}$, $\theta_i \simeq 60^{\circ}$. DF looks like



Best-fit $M_{\bullet} \simeq 10^8 \, M_{\odot}$, $\theta_i \simeq 60^{\circ}$. DF looks like



multiblob expansion results


Dispersion of *I* and *e* as function of *a*:

Dispersion of *I* and *e* as function of *a*:

Dispersion of *I* and *e* as function of *a*: NB: $\sigma_I \not\simeq 0.5\sigma_e!$

Summary of 3d models to date

- Either
 - provide only moderately good fit to photometry (PT03), or
 - barely fit kinematics (me)
- Don't make use of LOSVD information
- Cavalier treatment of errors^{zzz}
- Neglect the mass of the disc (~ 0.1 M_•)!

Three (semi-)independent implementations. All find $M_{\bullet} = 10^8 M_{\odot}$ to approximately 10%.

Degeneracies in fit: which (a, e) features are *essential*? Dynamically informed prior on (a, e, I) might be good.

2b. Two-dimensional, massive discs

Massive 2d discs: overview

T95: Massive disc makes orbits precess at different rates. Coherent eccentric disc won't last long.

Assume BH-plus-disc system stationary in frame rotating at pattern speed $\Omega_{\rm p}.$

Sridhar & Touma (1999): in nearly Keplerian potential,

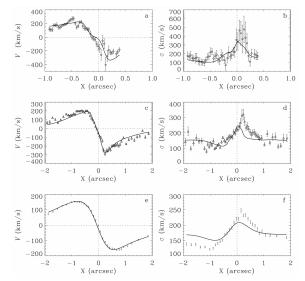
- almost all orbits regular
- family of loop orbits that reinforce I = 1 perturbations

Problem (2d)

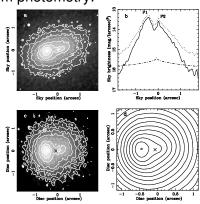
What are M_{\bullet} , $\Omega_{\rm P}$ and $\rho_{\rm disc}(x,y)$ for M31?

SS04 assume DF

$$f(a, e, \omega) = g(a) \exp \left[-\frac{[e - e_0(a)]^2}{2\sigma_e^2} \right] \exp \left[-\frac{\omega^2}{2\sigma_\omega^2} \right].$$


Iterative scheme for finding $\rho(x, y)$ given M_{\bullet} , Ω . E.g.,

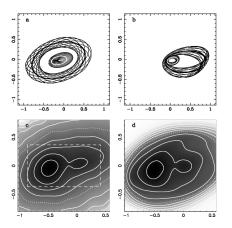
Adjust free parameters to match photometry (along P1–P2 only) and kinematics.


(Statler 1999; Salow & Statler 2001, 2004)

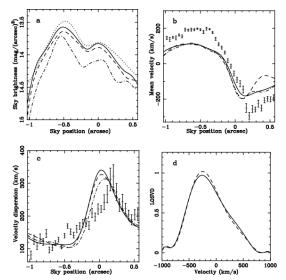
Best-fitting self-gravitating models in literature:

For 2d disc, we "know" $\rho(x, y)$ from photometry:

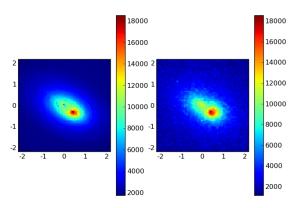
Find combination of orbits that self-consistently reproduces this $\rho(x, y)$ (with some assumed M_{\bullet} , $\Omega_{\rm p}$).

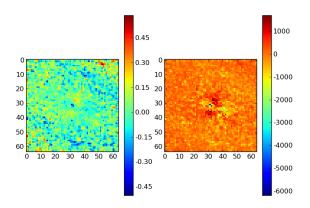


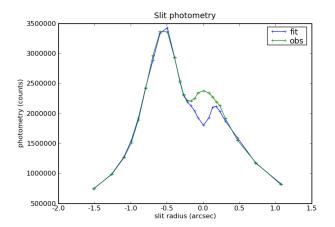
Schwarzschild (1982): triaxial $\rho(x, y, z)$ plus known $\Omega_{\rm p}$. $\rho(x, y)$, unknown M_{\bullet} , $\Omega_{\rm p}$, Present problem: obs errors

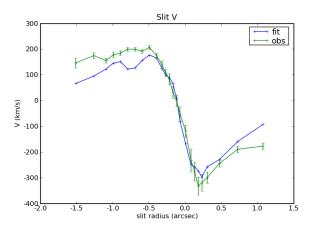

Schwarzschild's method!

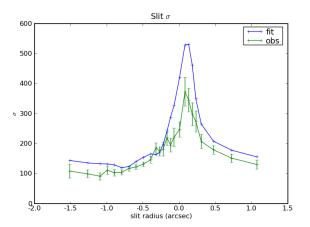
(Sambhus & Sridhar 2002)


Samples from orbit library, plus fit to photometry:

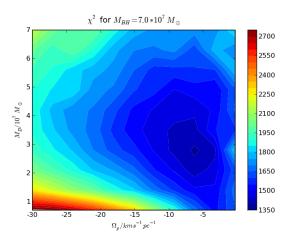

Kinematics weren't fit (they assumed $M_{\bullet} = 3.3 \times 10^7 M_{\odot}$):


(Calum Brown & JM, in prep)

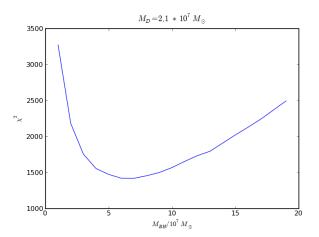

(Calum Brown & JM, in prep)


(Calum Brown & JM, in prep)

(Calum Brown & JM, in prep)



(Calum Brown & JM, in prep)


More up-to-date Schwarzschild models (Calum Brown & JM, in prep)

Constraints on pattern speed:

More up-to-date Schwarzschild models (Calum Brown & JM, in prep)

Constraints on BH mass:

Summary

Two problems

Schwarzschild (1982): perfect knowledge of triaxial $\rho(x, y, z)$, orbit families

M31: $\rho(x, y, z)$ biaxial at best, simpler orbits, *real data*, fascinating system.

Summary of detailed modelling efforts

	$M_{\bullet}/10^7 M_{\odot}$	$M_{\rm disc}/10^7 M_{\odot}$	$\Omega_{\rm p}$ [km/s/pc]	
PT03 SS04 B+05	10 5.3 1.2–2.3	1.4	36	Kepler 2d P3
JM Brown Brown+JM	10- <i>ϵ</i> 10+ <i>ϵ</i> 7	2.1	6	Kepler Kepler 2d

Summary

Two problems

Schwarzschild (1982): perfect knowledge of triaxial $\rho(x, y, z)$, orbit families

M31: $\rho(x, y, z)$ biaxial at best, simpler orbits, *real data*, fascinating system.

Summary of detailed modelling efforts

	$M_{\bullet}/10^7 M_{\odot}$	$M_{\rm disc}/10^7 M_{\odot}$	$\Omega_{\rm p}$ [km/s/pc]	
PT03	10			Kepler
SS04	5.3	1.4	36	2d
B+05	1.2–2.3			P3
JM	10- ϵ			Kepler
Brown	10+ ϵ			Kepler
Brown+JM	7	2.1	6	2d

Black hole mass

- Disk models
 - Data
 - 3d models with massless discs
 - 2d massive discs

summary