

M31 in the mid-infrared

Pauline Barmby
Western University
Ontario, Canada

IRAS and ISO gave us the infrared big picture of M31

Xu & Helou 96; Pagani et al 99

Spitzer/IRAC observations of M31 provides both big and small pictures

- measurement of global M_{*} and SFR
 - $M_* = 1.1 \times 10^{11} M_{\odot}$
 - SFR = $0.4 M_{\odot}/yr$: quiescent galaxy
- Finding evolved stars
 - supergiants $>10^6$ L $_\odot$; some not visible in optical
- Testing population synthesis models with GCs
 - models seem to be pretty good

The mid-infrared sees both young and old populations

3.6 micron total luminosity gives a stellar mass consistent with dynamics

SFR derived from 8.0 micron luminosity agrees with FIR, H α ; larger than radio

IRAC surface brightness profiles extend over 3 decades in radius

New observations will extend the IRAC profile to 6.6° x 4.4°

IRAC point-source photometry reveals a rich population of evolved stars

M31's globular clusters can be used to test population synthesis models

At mid-infrared wavelengths, different models don't quite agree

Including circumstellar dust makes the model outputs vary more

Within the uncertainties, models and data agree

Optical-to-IRAC colours could be good metallicity indicators

Thanks to collaborators & funding agencies

- M. Ashby, S. Willner, M. Pahre, J. Huchra (CfA)
- R. Gehrz, R. Humphreys, E. Polomski, C. Woodward (UMn)
- C. Engelbracht, K. Gordon, J. Hinz, P. Perez-Gonzalez, G. Rieke (Steward)
- L. Bianchi, D. Thilker (JHU)
- J. Mould (Swinburne)
- F. Jalilian (Western)

