## The Proper, Motion of M31

## Roeland van der Marel (STScI)

(ApJ, Jüly 2012)
I: HST measurement (Sohn, Anderson \& vdMarel)
II: Implied velocity + LG mass (vdMarel et al.) III: MW-M31-M33 future (vdMarel, Besla, et ad.)

## History



- 1912: Slipher measures $V_{\text {Los }}$; implies approach towards Milky Way at ~110 km/s Galactocentric
- 1918: Barnard finds no dectable proper motion (PM) from observations started in 1898
- No successful subsequent proper motion measurements
- The MW and M31 protogalaxies started expanding radially outwards after the Big Bang
- Subsequently started falling back together due to their mutual gravity (timing argument)
- Angular momentum induced by tidal torques from surrounding Local Universe: $\mathrm{V}_{\tan }<200 \mathrm{~km} / \mathrm{s}$
- Millennium simulation MW-M31like pairs (Li \& White 2008)
- median $\mathrm{V}_{\text {tan }} \sim 87 \mathrm{~km} / \mathrm{s}$
- Action modeling shows many possible solutions
$\rightarrow$ wide range of possible orbits


## Theory

## Proper Motion Challenge

- Relevant proper motions are small
- $200 \mathrm{~km} / \mathrm{s}$ at M31 $=55$ ras/year
- $40 \mathrm{~km} / \mathrm{s}$ at M31 = $11 \mu \mathrm{as} / \mathrm{ye}$ ar
- Maser VLBI - 2014?
- First discovered in M31 by Sjouwerman et al. (2010) and Darling (2011)
- Some years of follow-up required
- GAIA - 2018?
- MW-optimized, but can measure bright uncrowded M31 stars
- HST - now!
- $200 \mathrm{~km} / \mathrm{s}$ at M31 $=0.007$ ACS/WFC pixels over 7 years


## M31 HST Proper Motion Measurement

- Three fields observed to great depth ( $>200$ orbits)with ACS 2002-2004 to study MSTO (Brown et al.)
- Spheroid
- Outer Disk
- Tidal Stream
- Reobserved in 2010 for 9 orbits to determine proper motions.
- \#Half-orbit exposures per field:
- 2x ACS/WFC

- 4x WFC3/UVIS


## Ándromeda : Galaxy M31. HSTACS/WFC





## Positional Accuracy (per object, per exposure)



- 0.01 pixels for brightest objects
- Stars more accurate than background galaxies
- High final accuracy results from averaging over many objects, in 6 exposures, for 3 fields


## Heliocentric ( $\mathrm{PM}_{\text {Westr }} \mathrm{PM}_{\text {North }}$ )

- Black: individual exposures
- Red: weighted averages per field


M31 ALL 3 FIELDS



Zoom-in to Spheroid Field with 30,000 years of projected motion

## Alternative: M31 Transverse Velocity from Satellite Kinematics

- vdM \& Guhathakurta 2008; vdM et al. 2012 Paper II:
- Line-of-sight velocities of M31 satellites and distant globular clusters (31x)
- 3D velocity vectors of M31 satellites M33 and IC10 (water maser PMs; Brunthaler et al 2005,2007)
- Line-of-sight velocities of distant
 Local Group satellites ( 6 x )
- Results mutually consistent


## M31 Galactocentric Velocity

- Agreement HST vs. satellites
- Final weighted average
$-\mathrm{v}_{\mathrm{w}}=-125$ 災 $31 \mathrm{~km} / \mathrm{s}$
$-v_{N}=-74$ 睒 $28 \mathrm{~km} / \mathrm{s}$
(12 $\mu \mathrm{as} / \mathrm{yr}$ accuracy)
- Most of heliocentric velocity is reflex solar motion in MW
$-\mathrm{V}_{\odot}=239 \pm 10 \mathrm{~km} / \mathrm{s}$
(McMillan 2011)

- Galactocentric
- $\mathrm{V}_{\text {tan }}=17 \mathrm{~km} / \mathrm{s}$ (< $34 \mathrm{~km} / \mathrm{s} @ 68 \%$ )
- Consistent with MW-M31 Direct Collision Course!


## Future Orbital Evolution + Merging

- MW, M31, M33
- Three most massive LG galaxies
- Known positions, distances, velocities, masses
- "simple" Newtonian orbit calculation problem
- Two approaches
- N-body simulations (no gas, few specific initial conditions)
- See also Dubinski et al. (1996), Cox \& Loeb (2008)
- Semi-analytic orbit integrations w/ approximate dynamical friction (exploration observationally allowed parameter space)



## "Canonical" N-body Evolution

- Vtan $=28 \mathrm{~km} / \mathrm{s}$
- Pericenter 35 kpc @ 4.0 Gyr with V=586 km/s
["direct hit" <25 kpc: 41\%]
- Merger @ 6.3 Gyr [always; $\pm 1.2 \mathrm{Gyr}]$
- M33 settles onto slowly decaying orbit [84\%]
- All three galaxies orbit close to a single plane

- Candidate suns in red


## M33 - bound to M31 (95\% confidence)

- Past M33-M31 orbit consistent with models for M33-M31 tidal deformations (HI + RGB stars)
- MW approach distance can span large range
- M33 may hit MW first, before M31 [9\%]
- M33 may leave Local Group [7\%]




## So what's next for Milky Way, Sun, Earth?



June 1, 2012 Media headlines:

- THE BND OF THE GAMAXY AS WE KNOW IH?
- THE NAYAN'S WBRE 4 BIDMON YBARS OFF
- CRASII OF THIE THTANS
- MIIKY WAY GALAXY DODMBD
- COSMIC SMASIIUP PRBIDICTYBD
- WHEN WORLADS COHMIDE


## Milky Way Future

- Merger remnant will be(come) an elliptical galaxy
- $\mathrm{R}^{1 / 4}$ density profile
- Kinematics, FP (Cox \& Loeb 2008)
- Full mixing takes a long time
- MW, M31, M33 particles at 10 Gyr:



## Sun Future

- Sun will move to larger Galactocentric distance (also: Cox \& Loeb 2008) [85\%]
- Sun may move to >50 kpc [10\%]
- Sun may find itself moving through M33 in next 10 Gyr, while dynamically bound to MW-M31 remnant [20\%]


Sun distance at 10 Gyr

## Fate of the Sun:

## Milky Way-Andromeda Merger

Sun in the Milky Way today


## Earth Future

- Sun will still be main-sequence star when Andromeda arrives in 4 Gyr
- Earth will be too hot for life as we know it
- Sun will become red giant in 6 Gyr
- Earth will likely be vaporized
- Likelihood that other stars will pass close to the Sun is small
- Earth orbit likely to remain unperturbed

Today

## Conclusions

- Finally an M31 PM measurement!
- Confirms what has long been hypothesized: MW-M31 will merge
- Many interesting corrollary findings
- HST fantastic tool for Proper Motions and Local Group Dynamics; ask me about our ongoing PM work on
- Globular Clusters
- LMC+SMC
- Sagittarius Stream
- Leo I
- Leo T

- Satellites at Local Group Turnaround Radius

Direct-hit N-body simulation

