Diffuse Media Science with BigBOSS

J. Xavier Prochaska Interstellar Medium Program of Studies (IMPS) UCO/Lick Observatory UC Santa Cruz

Diffuse Media

My (loose) definition: $n_H < 1 \text{ cm}^{-3}$

- Intergalactic Medium (IGM; >>1 Mpc)
- Intracluster Medium (ICM; ~1Mpc)
- Circumgalactic Medium (CGM; ~100kpc)
- 'Ambient' Interstellar Medium (ISM; 10kpc).

>99% of the volume

>90% of z~0 baryons

Constituents

- ▶ Gas, metals, dust
- Neutral and ionized gas
- Accreting and outflowing material

Diffuse Media

My (loose) definition: $n_H < 1 \text{ cm}^{-3}$

- Intergalactic Medium (IGM; >>1 Mpc)
- Intracluster Medium (ICM; ~1Mpc)
- Circumgalactic Medium (CGM; ~100kpc)
- 'Ambient' Interstellar Medium (ISM; 10kpc).

>99% of the volume

>90% of z~0 baryons

- Constituents
 - ▶ Gas, metals, dust
 - Neutral and ionized gas
 - Accreting and outflowing material

The Diffuse Medium has too low density to be detected in emission beyond the local universe.

<u>Absorption is King+Queen</u>

- Cosmology
 - ▶ BAO
 - Power spectrum
 - ◆ Non-gaussianity
 - Baryonic Census
 - ◆ Gas, metals, dust
 - Characterizing the IBL

Galaxy Formation

- ▶ ISM dynamics
- Chemical evolution
- Gas accretion
- Feedback processes
 - ◆ Energy, gas, metals
- Mergers (tidal debris)

Prochaska+03

Star Formation

- ▶ Formation of H₂
- Dust depletion
- Nucleosynthetic yields

• 'Fundamental' Physics

- Evolution of the physical constants
- Neutrino mass

DM: Lessons from SDSS

(Focus on the Quasar Spectroscopy of SDSS)

- Advantages
 - Sample size
 - Spectrophotometry
- Disadvantages
 - Spectral resolution
 - ▶ Limited blue coverage
 - Higher density of UV transitions at higher energies

SDSS: Absorber Surveys

Damped Lya Systems (ISM)

MgII Systems (ISM/CGM)

- 100,000 quasars
 - Semi-automated searches
 - Human vetting was tractable
- Spectrophotometry not essential

SDSS: Absorber Surveys

Damped Lya Systems (ISM)

1.4

MgII Systems (ISM/CGM)

- Primary science (from counting absorbers)
 - ▶ Limited by systematics (e.g. dust), not statistics
 - ▶ Additional sample size may have <u>limited</u> value
- Mainly comes for 'free' in the main survey

SDSS: Needles in the Haystack

Damped Lya Systems (ISM)

MgII Systems (ISM/CGM)

- Tails of the distributions
 - In metallicity, kinematics, HI, dust content, etc.
 - Rarer than 1/100
- Push physical processes to their limits

SDSS: Needles in the Haystack

Quasar/Quasar Pairs

Hennawi+06

Quasar/Galaxy Pairs

daSilva+10 Chen+10 Tumlinson+11

- Rare configurations
 - Physical or projected
 - Sensitive probes of kpc scales (CGM)
 - Target selection critical

Stacked spectra (Absorber frame)

- Great for visualization of absorption lines
 - Spectrophotometry not essential
- Limited physical measurement

Stacked spectra (Absorber frame)

- Map diffuse dust to tens of kpc
- Extinction law (SMC)
- Spectrophotometry (and photometry) critical

Stacked spectra (Absorber frame)

- Coincident [OII] emission
 - Spectrophotometry critical
- Cosmological SFR density from diffuse gas tracer

Mean free path

- Search for Galactic-scale winds
 - Offset NaI absorption
 - Correlate with galaxy properties (e.g. inclination)

BigBOSS Requirements: Diffuse Media

(My) Technical requirements; not targeting

- Signal-to-noise
 - >5 for individual absorbers
- Wavelength coverage
 - ▶ Bluer is better; nuff' said
- Spectral resolution
 - ► R=3,000 is too low to faithfully measure column densities
 - Physical quantity
 - ▶ R=5,000 is tantalizing
 - ♦ Would require very high S/N (>20)
- Spectrophotometry
 - Critical to 'smoothing' experiments
 - **♦** Relative more than absolute
 - ➤ Can high precision be achieved with 1.5" fibers?

Open Science Topics/Questions in DM

Some of which lie beyond BigBOSS

- Enrichment of the z<1 IGM
 - ▶ Do metals extend beyond the CGM?
- HI Reionization at z>6
 - ▶ HeII reionization at z~3, too
- Extent/Mass/Energy of Feedback
 - SF-driven (SNe, radiation)
 - Quasar-driven
- WHIM or not a WHIM?
- Thermal history of the IGM
 - ▶ Blazars?!
- Dust beyond SF regions
 - Distribution, composition
- Morphology of the ISM

DM: Community-based BB Projects

Main survey

- ▶ Faint quasar spectroscopy across the sky
 - Unprecedented absorber statistics
- Needles in the haystack
 - May require targeting non-standard sources
- Piggy-back mode
 - Community fibers
 - ▶ Key for rare objects on the sky
- Full instrument
 - High-spatial mapping of diffuse medium
 - Requires high-density of sources
 - Challenging for absorption studies

DM: Community-based BB Projects

Getting the ball rolling...

IGM/Galaxy Connection at z<1

Tripp+11

Science

- CGM characterization
- ▶ Environment/gas connection
- ▶ Galactic feedback
- 'Mapping' the cosmic web
- Observations
 - ▶ HST/COS will obtain exquiste UV spectra of several 10's quasars
 - High S/N
 - Coverage of range of ionization states
 - Dedicated+deep galaxy survey on small and medium scales
 - ◆ 100kpc to tens of Mpc
 - sub-L* => R~23mag

Characterizing Galactic-Winds at z~0.5

Science

- Nature of feedback across cosmic time
 - \star z~0, z~1, z>2 are under heavy study
- Connect to galaxy properties (AGN,SF)

Observations

- ▶ Target 50,000+ SF galaxies at z~0.5
 - e.g. 10 dedicated fibers per BB pointing
 - ♦ r<22mag with S/N~1 in the continuum
 </p>
 - Coverage of FeII, MgII, NaI absorption
- Stacked spectra (for most analysis)
- BOSS project underway

Ancillary

- Incredible dataset for studying SF galaxies at modest redshift
- Galaxy/galaxy tomography
- Can this be extended to z>1?

Mapping the CGM at z~0.5

Science

- Census of metals, dust, gas in the CGM of galaxies
 - Propagation of metals to the IGM (feedback)
- ▶ Reservoir for future SF ("recycling")

Observations

- Require probes (ideally multiple) on projected scales of a few hundred kpc
 - → BB provides coverage of FeII, MgII
- Need target galaxies (see previous slide)
 - ♦ Rare configurations => Select fibers
 - Could re-map BB fields too
 - ◆ LRGs too
- Background sources
 - Quasars, SF galaxies
 - **→** Leverage existing SDSS/BOSS spectra
- Stacked and individual spectra

Close QQ and QG Pairs at all z

Science

- ► CGM of quasars and galaxies
 - ◆ Gas, metal, dust distributions
- Small-scale feedback processes
- ▶ IGM thermal history, enrichment
- Quasar triggering
- Galaxy/galaxy mergers

Observations

- ▶ Target any/all sources within a few arcseconds of a known QSO
 - SDSS and BOSS

Ancillary

▶ Tremendous follow-up value

Needles

- Science
 - Highly enriched gas
 - **→** Dust production; nucleosynthesis
 - "Metal-free" gas
 - ◆ BBN; feedback; PopIII stars
 - ▶ HeII reionization
 - ▶ High z IGM
- Observations
 - Targeting matters
 - Quasars with highly reddened color
 - Quasars within the stellar locus
 - → Fainter quasars at z>4
 - ▶ BB offers an unprecedented opportunity to target the unknown

 10^0

Number density (cm⁻³)

10⁻⁵

 10^{10}

Small-scale structure of the ISM

Science

- ▶ Density structure of the neutral ISM
- Morphology of atomic 'clouds'

Observations

- ▶ Target large stellar clusters on the sky
 - **♦** Open clusters?
- High S/N spectra for NaI, CaII absorption
 - ◆ Not optimal ions, but only options
- ▶ Examine kinematic, spatial variations

Ancillary

▶ High S/N spectra will enable characterization of stellar atmospheres

Extinction Maps of Local Galaxies

Science

- ▶ Galactic-scale feedback
 - **→** Traced by metals/dust
- Dust formation/destruction
- Characterization of the diffuse ISM

Observations

- Choose nearby galaxies
 - **♦** Large angular extent
 - ◆ ~100kpc in the BB field-of view
- ► Target (R<22 sources)
 - **♦** Galactic stars -- Galactic extinction
 - Quasars, red-and-dead galaxies
- Photometry will be essential

