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Structure of molecular clouds

Efficiency of star formation

Feedback

Mechanisms for forming molecular clouds

Implications for:

 observations of distant objects
« star formation rates

* IMFs
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Current star-formation efficiencies range from 3% to 6%
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Structure of molecular clouds = most of the mass
IS at low density

Efficiency of star formation: low, because only
( high-density regions form stars... and because of

Feedback! (strongly limits cloud lifetimes)
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Taurus: low-density regions show magnetic "striations"
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Low efficiency:

not due to ambipolar diffusion of magnetic
fields

- feedback: energy input from massive stars
limits cloud lifetimes

» structured clouds: high density regions small
mass/volume filling factors due to

* magnetic support of low-density regions
(e.g., Price & Bate 2009)
« gravitational focusing
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Structure of molecular clouds = most of the mass
IS at low density

Efficiency of star formation: low, because of

( feedback and
Gravitational focusing- a natural byproduct of the
formation mechanisms for molecular clouds
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Young stars in Orion: most have ages ~ 1-2 Myr
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crossing time ~ 10-20 Myr -
= information not propagated laterally; swept up!
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Finite sheet evolution with gravity

Burkert & Hartmann 04; piece of bubble wall = sheet
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“Orion A” model (Hartmann & Burkert 2007);

collapse of finite, massive, elliptical, rotating sheet
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Global collapse (over ~ 2 Myr) - makes filamentary
ridge, Orion Nebula cluster
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Global collapse (over ~ 2 Myr) - makes filamentary
ridge, Orion Nebula cluster

, ~
2--2 Short radius of curvature
' results in extra mass
concentrations
=> assemble cluster gas/

stars




Orion Nebula cluster- (optical) kinematics of stars and
gas: evidence for infall?
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gravitational focusing: clusters form
preferentially at ends of filaments
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Cluster gravitational focusing- any short radius of
curvature will do
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NEED turbulence to generate density fluctuations during cloud
formation- must be rapid to compete with global collapse




NEED turbulence to generate density fluctuations during cloud
formation- must be rapid to compete with global collapse

Thin shell Kelvin- cooling
Helmholtz dnsel
instability)
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F. Heitsch et al. 2007; sheet made by inflows
with cooling, gravity
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Structure of molecular clouds = most of the mass
IS at low density

Efficiency of star formation: low, because of

( feedback and
Gravitational focusing- a natural byproduct of the
formation mechanisms for molecular clouds: make
clusters
stars...
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What about the stellar IMF?

fragmentation

“competitive
accretion”
N(log m) (e.g., Bonnell

et al.)

log M—

not clear evidence of variation, though massive clusters near
GC suggest slightly flatter upper IMF (Stolte, Figer, etc.)
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high-mass IMF depends upon amount of accretion,
evolution toward Salpeter slope (or beyond?)
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Numerical simulations of competitive accretion in sheets
(Hsu et al. 2010);
high-mass IMF depends upon amount of accretion,
evolution toward Salpeter slope (or beyond?)

I' = -1 as limiting slope

Similar to star cluster IMF (Fall, Chandar) ;
gravitational focussing
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The local story:

~ Compression dM(tot)/dt

gravitational focusing
ffic
L feedback (dispersal) :) S



How does this work for the
molecular "ring"?

L=
I

Mass Surface Density (M, pc'2 )
N -
I ]

o

Dame 1993, AIPC 278, 267

Milky Way
N(H,) Density




Does star formation follow the H, content?

Is the SFR low in the molecular "ring"?
Or just more diffuse "shielded" gas?
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Mass Surface Density (M pc?)

Does star formation follow the H, content?

Is the SFR low in the molecular "ring"?
Or just more diffuse "shielded" gas?
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Mass Surface Density (M pc?)

Does star formation follow the H, content?

Is the SFR low in the molecular "ring"?
Or just more diffuse "shielded" gas?
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12CO can be seen at low A,, ; if more shielding because

higher average gas density, a solar neighborhood
"molecular cloud" may differ from a molecular ring "cloud”

H.S. Liszt: 2007
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12CO can be seen at low A, ; if more shielding because

higher average gas density, a solar neighborhood
"molecular cloud"” may differ from a molecular ring "cloud”

H.S. Liszt: 2007

12CO is a column density
tracer, not just a density tracer

<radio
= Burgh
Sonnentrucker

o g
N(H,) [cm™2]




Implications for distant objects:
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Age "spreads" and "cloud lifetimes”

Cep OB2
20 [pe ~ 10 Myr-old
l cluster:
supernova/
winds

100 um IRAS r-old cluster, H I

dust emission
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Star formation where gas 1s compressed by shocks

NGC 6946
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Ferguson et al. 1998

e outer disk spiral shock;
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continue propagating SF

e inner disk; potential well,
(Q <~ 1), more gas = more

continuing SF (local
feedback)



Star formation where gas 1s compressed by shocks

NGC B0 e e e outer disk spiral shock;
gy TS oy - not enough material to
M continue propagating SF

e inner disk; potential well,
(Q <~ 1), more gas = more

continuing SF (local
feedback)

Ferguson et al. 1998

dZ/dt = 2 x eff x[v
efficiency ~ 2% per cloud, x few triggered = 10%/orbit

- v(pattern) | = 2/t

orb

=> one version of the Kennicutt-Schmidt law
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Gas content and SFR?

» molecular gas should trace SFR more closely, as it
generally traces the densest gas

* high-density molecular tracers should follow the SFR very
closely; but this does not address the question of the RATE
of formation of dense molecular gas

* CO is sensitive to column density as well as density; likely
to trace different phases in differing regions (and most CO
emission comes from non-star forming gas in the solar
neighborhood)



Structure of molecular clouds: most mass at low p

Efficiency of star formation ~ few %

Feedback + gravitational focusing limit efficiency
Molecular clouds formed by large-scale flows;
creates turbulent structure necessary for
fragmentation into stars

distant objects: averaging over cycling of gas

star formation rates set by gas content (not just
molecular gas) plus rate of compressions

gravitational focusing may lead to similar massive
star and cluster IMFs, but physics of peak unclear
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Typical numerical simulations:
start with imposed turbulent velocity = virial
= prevents immediate collapse

o Aroghysca How do clouds "know" to have
this level of turbulence, given
how the clouds form?

Too much: doesn't collapse,
expands; too little, collapse;
how to hit the sweet spot?

can't in general.

However, turbulence IS
needed to make stellar
fragments...
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Region <t > (Myr) Molecular gas? t(cross) (Myr)

Coalsack yes
Cha 111 yes
Pipe Nebula

Orion Nebuls

e =

Taurus

Oph

Cha 1,11

Lupus

MBM 12A

IC 348

NGC 2264
Upper Sco
Lower Cen-Crux

<t> << t(cross); clouds swept-up by
large scale flows

Fast onset
after MC
formation!

~ DN




Growth of high-mass power-law tail:
edoesn’t require initial cluster environment
«dM/dt oc M2

dM/dt

Bondi-Hoyle:
dM/dt oc M2 p v-3




Orion A: 13CO (Bally et al.)
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Fast onset
after MC
formation!
(because
cloud is
already
collapsing
globally)




Region <t > (Myr) Molecular gas? t{cross) (Myr)

Coalsack yes
Cha 111 yes
Pipe Nebula

Orion Nebuls

e =

Taurus
Oph
Cha 1,11
Lupus

Fast onset
after MC
formation!
MBM 12A (because
IC 348 9. : .
NGC 2264 . cloud is
Upper Sco : : : already
Lower Cen-Crux I CO”apSing
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Orion Nebula cluster- kinematics of stars and
gas: evidence for infall?
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Upper Scorpius

Hurray! ONE region not peaking at 1-2 Myr ago...

OOPS; NO molecular gas!
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Hurray! ONE region not peaking at 1-2 Myr ago...

OOPS; NO molecular gas!










Hsu, Heitsch et al.



Compression



Compression dM(tot)/dt



Compression dM(tot)/dt
gravitational focusing

feedback (dispersal)



Compression dM(tot)/dt

gravitational focusing
:) efficiency

feedback (dispersal)



~ Compression dM(tot)/dt

gravitational focusing
k feedback (dispersal) :) ericiency




-

_

Summary: SFR set by

dM(tot)/dt x efficiency;

Compression (rate of)

gravitational focusing (makes low

efficiency by feedback possible)
feedback (dispersal)
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Upper Scorpius

Hurray! ONE region not peaking at 1-2 Myr ago...

OOPS; NO molecular gas (only on periphery)




Hurray! ONE region not peaking at 1-2 Myr ago...

OOPS; NO molecular gas (only on periphery)
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A popular cloud model:

44 UK Astrophysical
& Flusds Facilty

44 UK Astrophysical
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Must put in (arbitrary) velocity field with some "large
scale" component to make it look like a real cloud



Accretion of randomly-placed sink particles in a sheet;
does competitive accretion still work?
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Another popular cloud model:
periodic box




Another popular cloud model:
periodic box

This model also
needs imposed
turbulence to make
reasonable-looking
structure;




Another popular cloud model:
periodic box

This model also
needs imposed
turbulence to make
reasonable-looking
structure;

also: eliminates
large-scale gravity
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