An Introduction to Adaptive Optics

GFA

BSERVAT

Exploring the Universe, Sharing its Wonders

Presented by Julian C. Christou Gemini Observatory

Gemini North in action

An AO Outline

* Turbulence

loring the Universe, Sharing it<u>s Wonders</u>

- * Atmospheric turbulence distorts plane wave from distant object.
- * How does the turbulence distort the wavefront?

* Wavefront Sensing

- * Measuring the distorted wavefront (WFS)
- * Wavefront Correction
 - * Wavefront corrector deformable mirror (DM)
- * Real-time control
 - * Converting the sensed wavefront to commands to control a DM
- * Measuring system performance
 - * Residual wavefront error, Strehl ratio, FWHM
- * Characteristics of an AO Image/PSF

Why Adaptive Optics

* Turbulence in earth's atmosphere makes stars "twinkle".

ploring the Universe, Sharing its Wonders

 * Adaptive Optics (AO) takes the "twinkle out of starlight"

* Turbulence spreads out light.

- * A "blob" rather than a point
- * Seeing disk ~ 0.5 1.0 arcseconds
 - With AO can approach the diffraction-limit of the aperture.

 $\theta = \lambda / D$

Sources of Turbulence

Turbulent Cells

Rays not parallel

Plane Wave

Temperature variations lead to index of refraction variations

Distorted Wavefront

How Turbulence affects Imaging

- * Temperature fluctuations in small patches of air cause changes in index of refraction (like many little lenses)
- Light rays are refracted many times (by small amounts)
- When they reach telescope they are no longer parallel
- * Hence rays can't be focused to a point:

ploring the Universe, Sharing its

Imaging through a perfect telescope with no atmosphere

plorina the Universe. Sharina its Wonders

Point Spread Function (PSF): intensity profile from point source

With no turbulence, FWHM is diffraction limit of telescope,

ϑ~ 1/D

Example:

 $\lambda / D = 0.056$ arc sec for $\lambda = 2.2$ μ m, D = 8 m

With turbulence, image size gets much larger (typically 0.5 – 2.0 arc sec)

Turbulence strength r_0

"Fried parameter"

Wavefront of light

 Γ_{0}

Primary mirror of telescope

* "Coherence Length" r_0 : distance over which optical phase distortion has mean square value of 1 rad²

* $r_0 \sim 15 - 30$ cm at good observing sites

* $r_0 = 10 \text{ cm} \Leftrightarrow \text{FWHM} = 1 \text{ arcsec } \text{at } \lambda = 0.5 \mu \text{m}$

The Coherence length $-r_0$

* r_0 sets the scale of all AO correction

orina the Universe. Sharina its Wonders

$$r_{0} = \left[0.423k^{2} \sec \varsigma \int_{0}^{H} C_{N}^{2}(z) dz \right]^{-3/5} \propto \lambda^{6/5} \left(\sec \varsigma \right)^{-3/5} \left[\int C_{N}^{2}(z) dz \right]^{-3}$$

* r_0 decreases when turbulence is strong (C_N^2 large)

- $* r_0$ increases at longer wavelengths
 - * AO is easier in the IR than with visible light
- * r_0 decreases as telescope looks toward the horizon (larger zenith angles ζ)
- * At excellent sites such as Mauna Kea in Hawaii, r_0 at $\lambda = 0.5$ micron is 10 30 cm.
- * A large range from night to night, and also during a night.

Image Size and Turbulence

* If telescope diameter $D >> r_0$, image size of a point source is $\lambda / r_0 >> \lambda / D$

ploring the Universe, Sharing its Wonders

* r_0 is diameter of the circular pupil for which the diffraction limited image and the seeing limited image have the same angular resolution.

* r_0 (λ = 500 nm) \approx 25 cm at a good site. So any telescope larger than this has no better spatial resolution!

r_0 & the telescope diameter D

- * Coherence length of turbulence: r_0 (Fried's parameter)
- * For telescope diameter $D < (2-3) \times r_0$
 - * Dominant effect is "image wander"
- * As D becomes $>> r_0$

loring the Universe, Sharing its Wonders

- * Many small "speckles" develop
 - * N ~ (D/r_0)
- * Speckle scale ~ diffraction-limit

 $D = 1 \, {\rm m}$

 $D = 2 \, {\rm m}$

 $D = 8 \, {\rm m}$

Real-time Turbulence

Image is spread out into speckles

Centroid jumps around (image motion)

"Speckle images": sequence of short snapshots of a star

Concept of Adaptive Optics

Measure details of blurring from "guide star" at or near the object you want to observe Calculate (on a computer) the shape to apply to deformable mirror to correct blurring Light from both guide star and astronomical object is reflected from deformable mirror; distortions are removed

Adaptive Optics in Action

Exploring the Universe, Sharing its Wonders

With adaptive optics

The Adaptive Optics PSF

Exploring the Universe, Sharing its Wonders

Intensity

Definition of "Strehl": Ratio of peak intensity to that of "perfect" optical system

* When AO system performs well, more energy in core

* When AO system is stressed (poor seeing), halo contains larger fraction of energy (diameter $\sim r_0$)

* Ratio between core and halo varies during night

Adaptive Optics

- *How does Adaptive Optics Work?
 - * Sense the wavefront errors produced by the atmosphere.
 - * Wavefront sensor (WFS) technology
 - * Correct the wavefront, i.e. convert the corrugated wavefront to a flat wavefront.
 - * Wavefront Corrector Deformable Mirror (DM) technology
 - * Real Time Controller.
 - * How to convert the WFS measurements to signals to control the shape of the DM and adjust it ~ 100-200 Hz.
 - ***** Guide Stars
 - * Natural Guide Star
 - * Laser Guide Star
 - * Rayleigh Beacon
 - * Sodium Beacom

Closed-loop AO System

Light From Telescope Adaptive Distorted Mirror Wavefront Beamsplitter Feedback loop: Control Corrected next cycle System Wavefront corrects the (small) errors of the last cycle **High-resolution** Wavefront Camera Sensor

Wavefront Sensing

Wavefront Sensing

Shack-Hartmann wavefront sensor

Wavefront Sensing

- * Shack-Hartmann WFS
 - * Divide pupil into subapertures of size $\sim r_0$
 - * Number of subapertures ~ $(D / r_0)^2$
 - * Lenslet in each subaperture focuses incoming light to a spot on the wavefront sensor's CCD detector
 - Deviation of spot position from a perfectly square grid measures shape of incoming wavefront
 - * Wavefront reconstructor computer uses positions of spots to calculate voltages to send to deformable mirror

WFS sensitivity to r_0

- * For smaller r_0 (worse turbulence) need:
 - * Smaller sub-apertures
 - * More actuators on deformable mirror
 - * More lenslets on wavefront sensor
 - * Faster AO system
 - * Faster computer, lower-noise wavefront sensor detector
 - * Much brighter guide star (natural star or laser)

Smaller r₀ (worse turbulence) \Rightarrow need faster AO system
 Shorter WFS integration time \Rightarrow need brighter guide star

The Isoplanatic angle

Turbulence has to be similar on path to reference star and to science object

Common path has to be large

Anisoplanatism sets a limit to distance of reference star from the science object

Wavefront Correction

Wavefront Correction Concept

Exploring the Universe, Sharing its Wonders

BEFORE

AFTER

Incoming Wave with Aberration Deformable Mirror

Corrected Wavefront

Wavefront Correction

Wavefront Correction

- In practice, a small deformable mirror with a thin bendable face sheet is used
- Placed <u>after</u> the main telescope mirror

Light

Typical Deformable Mirror

Glass face-sheet

Cables leading to mirror's power supply (where voltage is applied)

PZT or PMN actuators: get longer and shorter as voltage is changed

Anti-reflection coating

Guide Stars

"Guide" Stars

- * The WFS requires a point-source to measure the wavefront error.
- * A natural guide star (V < 11) is needed for the WFS.
 - Limited sky coverage and anisoplanatism
- Create an artificial guide star
 Rayleigh Beacon ~ 10 20 km
 Sodium Beacon ~ 90 km

Rayleigh and Sodium "Guide" Stars

 Sodium guide stars: excite atoms in "sodium layer" at altitude of ~ 95 km

ploring the Universe, Sharing its Wonders

 Rayleigh guide stars: Rayleigh scattering from air molecules sends light back into telescope, h ~ 10 km

 Higher altitude of sodium layer is closer to sampling the same turbulence that a star from "infinity" passes through

~ 95 km

Focal Ansioplanatism

Exploring the Universe, Sharing its Wonders

Credit: Hardy

TT Natural Guide Star

AO Performance

- * AO delivers improved Focal Plane performance.
 - * How to measure this performance?
 - * Residual wavefront error
 - * Phase variance
 - * Strehl ratio
 - * Full width at half-maximum
 - * Encircled energy
 - * All are related

Phase variance and Strehl ratio

* "Maréchal Approximation"

Strehl
$$\cong \exp(-\sigma_{\phi}^2)$$

where σ_{ϕ}^{2} is the total wavefront variance

* Valid when Strehl > 10% or so

* Under-estimate of Strehl for larger values of σ_{ϕ}^{2}

Gemini AO Instruments

Exploring the Universe, Sharing its Wonders

GEMINI OBSERVATORY

AO System	Instrument	FoV (")	Strehl Ratio (H-Band)	R _{lim} (full/limit)	Sky Coverage (%)
UH36	QUIRC	20	15	15	1
Altair NGS	NIRI / NIFS	20	35	12/15	< 1
Altair LGS	NIRI / NIFS	20/50	20	15/18	~ 30
NICI	Coronograph Imager	14	45	12/15	< 1
GeMS (MCAO)	GSAOI Flamingos-2	83	40	15/18	~ 30
GPI	Coronograph IFU	?/4	90	8/11	< 0.1
GLAO	all instruments	up to 360	5*	>15	100
Past Present In Development			Possible	Possible Future Instrument	

Altair Overview

Altair - <u>ALT</u>titude conjugate <u>A</u>daptive optics for the <u>I</u>nfra<u>R</u>ed)

 Facility natural/laser guide star adaptive optics system of the Gemini North telescope.

Altair Overview

- * Shack-Hartmann WFS 12 × 12 lenslet array visible light.
- * 177 actuator deformable mirror (DM) and a separate tip-tilt mirror (TTM)
- * Closed loop operation at \leq 1 KHz
- Initially single conjugate at 6.5km
- * 87-92% J K optical throughput
- NGS operation since 2004
 - * Strehl ratio typically 0.2 to 0.4 (best at H, K)
 - * FWHM = 0.07"

loring the Universe, Sharing its Wonders

- * LGS commissioned in 2007
- LGS Strehl ratio ~0.3 at 2.2 μ m (FWHM = 0.083")
- LGS sky coverage ~ 40% (4% for NGS)
- NGS tip-tilt star $\leq 25''$
- LGS science operations ~1 to 2 weeks/month

Altair PSFs (K)

Variability of the Altair NGS PSF with seeing.

- PSF depends upon conditions
- Photometry/Astrometry difficult in crowded fields:
 - * Overlapping PSFs
 - * SNR problems
 - * Require good PSF estimate
 - Model Fitting (StarFinder)
 - * Deconvolution

Altair PSFs (K)

PSF Metrics (K)

Exploring the Universe, Sharing its Wonders

Near Infrared Coronographic Imager - NICI

Exploring the Universe, Sharing its Wonders

Near Infrared Coronagraphic Imager - NICI

Exploring the Universe, Sharing its Wonders

- AO System + Lyot Coronograph + Dual Channel Near-IR Camera
 - Optimized for High-Contrast Imaging
 - Lensless
 - Minimum static aberrations
 - Differential Imaging
- 85-element curvature system
 - Natural Guide Star (on-axis)
 - H-Band Strehl ratio:
 - 20% for V = 13
 - 40% for bright stars
 - Dual channel InSb
 - 1 μ m $\leq \lambda \leq 2.5 \mu$ m (J K bands)
 - Focal plane and Pupil plane masks
 - Beamsplitting elements
 - Filters in each channel

The NICI Point Spread Function

Exploring the Universe, Sharing its Wonders

- /

NI

Exploring the Universe, Sharing its Wonders

NICI Data Reduction

- ADI Reduction (using field rotation)
 - For Red and Blue Arms separately:
 - Standard Calibration Flats, Darks, Bad Pixels etc.
 - Register (sub-pixel shift) to central star.
 - Highpass filter look for point sources
 - Match speckles simplex minimization scale intensity
 - Median ADI cube for PSF
 - Subtract PSF from data cube matching speckles of individual frames.

SDI Reduction

- Cancels primary retaining methane band object
 - * Shift images, adjust image scale for wavelength
 - * Subtract final results

Spectral Differential Imaging

Angular Differential Imaging

Angular Differential Imaging (ADI)

