

Stars are the fundamental objects of the cosmos

Stars are the fundamental objects of the cosmos
-They transform hydrogen, the primary product of the big bang, into the heavy elements of the periodic table.

Stars are the fundamental objects of the cosmos

-They transform hydrogen, the primary product of the big bang, into the heavy elements of the periodic table.
-Through stellar evolution they control evolution of all stellar systems including clusters and galaxies.

Stars are the fundamental objects of the cosmos

-They transform hydrogen, the primary product of the big bang, into the heavy elements of the periodic table.
-Through stellar evolution they control evolution of all stellar systems including clusters and galaxies.
-They provide the sites for planetary systems and the energy necessary for development of life.

A Little History.....

Genesis 1-16,17

And God made two great lights; the greater light to rule the day and the lesser light to rule the night: he made the stars also.

And God set them in the firmament of the heaven to give light upon the earth.

Aristotle's Universe (384 BC - 165 AD) Greeks Invent The Scientific Cosmos

the perfect heavens and
the imperfect earth.

Aristotle's Universe (384 BC - 165 AD) Greeks Invent The Scientific Cosmos

There are two realms of the Universe:

Stars consist of aether, a perfect, unchanging substance.

Copernicus 1473-1543

NICOLAICORERNICI

net, in quo terram cum orbe lunari tanquam epicyclo contineri diximus. Quinto loco Venus nono menfe reducitur., Sextum deniqp locum Mercurius tenet, octuaginta dierum fpacio circu currens. In medio ucro omniumxefidet Sol. Quis enimin hos

puicherimo templolampadem hanc in aliouel melioriloco po neres, quàmunde totum fimul pofsit illuminare:Siquidem non inepte quidam lucernam mundi, aly mentem, alÿ rectorem uos cant. Trimegiftus uifibilem Deum, Sophodis Electra intuentē omnia. Ita profecto tanquam in folio regali Sol refidens circum egentem gubernat Aftrorum farmiliam. Tellus quogs minime fraudaturlunari minifterio, fed ut Ariftoteles de animalibus ait,maximã Luna cū terra cognationẽ habet. Concipit intereà̀ Soleterra, \& impregnaur annuo partu. Inucnimus igitur fub

Tycho Brahe 1546-1601

NICOLAICORERNICI

net, in quo terram cum orbe lunari tanquam epicyclo contineri diximus . Quinto loco Venus nono menfe reducitur., Sextum deniqp locum Mercurius tenet, octuaginta dierum fpacio circu currens. In medio ucro omniumxefidet Sol. Quis enimin hos

pulcherimo templolampadem hanc in aliouel melioriloco po neret, quàmunde totum fimul pofsit illuminareeSiquidem non inepte quidam lucernam mundi, aly mentem, alÿ rectorem uos cant. Trimegiftus uifibilem Deum, Sophodis Electra intuenté omnia. Ita profecto tanquam in folio re gali Sol refidens circum egentem gubernat Aftrorum farmiliam. Tellus quogs minime fraudaturlunari minifterio, fed ut Ariftoteles de animalibus ait,maximã Luna cũ terra cognationẽ habet. Concipit intereà̀ Soleterra, \& impregnaur annuo partu. Inucnimus igitur fub

Solution: stars are very distant (and very luminous)!

NICOLAICORERNICI

net, in quo terram cum orbe lunari tanquam epicyclo contineri diximus. Quinto loco Venus nonomenfereducitur., Sextum deníp locum Mercurius tenet, octuaginta dierum fpacio circu currens, In medio ucro omnium refidet Sol. Quis enimin hos

pulcherimo templolampadem hanc in aliouel melioriloco po neret, quàm unde totum fimul pofsit illuminaree:Siquidem non inepte quidam lucernam mundi, aľ̀ mentem, alÿ rectorem uo: cant. Trimegiftus uifibilem Deum, Sophodis Electra intuenté omnia. Ita profecto tanquam in folio regali Sol refidens circum egentem gubernat Aftrorum farmiliam. Tellus quogs minime fraudaturlunari minifterio, fed ut Ariftoteles de animalibus ait,maximã Luna cü terra cognationẽ habet. Concipit intereà̀ Soleterra, \& impregnatur annuo partu. Inucnimus igitur fub

Equivalence of the Sun and Stars

"First it is allowed, as I have endeavoured to shew, by all modern Philosophers, that the
Sun and the Stars are all of the same or like Nature: consequently, that the Stars are all Suns, and that the Sun himself is a Star"

Thomas Wright in "An Original Theory of The Universe", 1750

But what 's the Sun?

Universal Gravitation and Star Formation

Isaac Newton 1642-1727
"But if the matter was evenly diffused through an infinite space, it would never convene into one mass but some of it convene into one mass \& some into another so as to make an infinite number of great masses scattered at great distances from one another throughout all the infinite space. And thus might the Sun and Fixt stars be formed supposing the
minewton to Rev. Richard Bentley, 10 December 1692

William Herschel and The

 Concept of Cosmic Evolution

William Herschel 1738-1822
"In my paper of observations of the nebulous part of the heavens, I have endeavored to shew the probability of a very gradual conversion of the nebulous matter into the sidereal appearance."

Observations relating to the Construction of the Heavens, 1811, Phil. Trans., Cl, 269-336.

William Herschel and The Concept of Cosmic Evolution

William Herschel 1738-1822
"but... why should we not look up to the universal gravitation of matter as the cause of every condensation, accumulation, compression and concentration of the nebulous matter?

Observations relating to the Construction of the Heavens, 1811, Phil. Trans., Cl, 269-336.

William Herschel and The Concept of Cosmic Evolution

William Herschel 1738-1822

Star Formation is an ongoing process!

As such it is subject to direct empirical study.

Observations relating to the Construction of the Heavens, 1811, Phil. Trans., CI, 269-336.

Protoplanetary Disks: A slight digression

Kant-Laplace Nebular Hypothesis

A nebula in slow rotation, gradually pulled together by its own gravitational force and flattened into a spinning disk, gave birth to the Sun and planets.

William Huggins
 1824-1910

"The riddle of nebulae was solved. The answer which had come to us in the light itself read: Not an aggregation of stars, but luminous gas...the light of this nebula had been emitted by a luminous gas."

The New Astronomy of the Nineteenth Century, June, 1897

> William Huggins 1824-1910
"The riddle of nebulae was solved. The answer which had come to us in the light itself read: Not an aggregation of stars, but luminous gas...the light of this nebula had been emitted by a luminous gas."

The New Astronomy of the Nineteenth Century, June, 1897

But the composition of these luminous fluids, being composed of hydrogen and nitrogen, differed from stars and planets and could not be the material from which stars formed as Herschel had suggested!

"The riddle of nebulae was solved. The answer which had come to us in the light itself read: Not an aggregation of stars, but luminous gas...the light of this nebula had been emitted by a luminous gas."

The New Astronomy of the Nineteenth Century, June, 1897

William Huggins

$10 \cap 1$ 1n1
"The conclusion is strongly indicated that the order of the abundance of the elements in the solar atmosphere is much the same as in the earth's crust."

Russell, Dugan \& Stewart 1927 in Astronomy, Ginn \& Co 502

Setting the Stage: Discovery of The Composition of Stars

C. Payne-Gaposchkin 1900-1980

Stellar Atmospheres: PhD Thesis Harvard 1925

Two fundamental results:
1- Stars have uniform composition and
2- Stars are primarily made up of hydrogen

Bengt Stromgren 1908-1987

Hans Bethe
1906-2005

The Physical Nature of Stars

In 1938 Stromgren showed that stellar interiors composed of primarily hydrogen would have central temperatures $\sim 10^{7} \mathrm{~K}$ much lower than if they were made of iron.

In 1938 Bethe showed that with such central temperatures fusion reactions (CNO and p-p cycles) could power stars and thus demonstrated that:

Stars are thermo-nuclear reactors which fuse the primary product of the big bang into heavier elements of the periodic table releasing enormous amounts of energy in the process.

STUDIES OF EXTREMELY YOUNG CLUSTERS. I. NGC 2264

Merle F. Walker*
Mount Wilson and Palomar Observatories
Carnegie Institution of Washington, California Institute of Technology
Received May 21, 1956

ABSTRACT

Three-color photoelectric and photographic observations of NGC 2264 have been obtained to $V=17$, in order to investigate the color-magnitude diagram of an extremely young cluster of stars. The diagram indicates that the cluster possesses a normal main sequence extending from O 7 to A0, below which the stars fall above the main sequence. The reality of this effect has been confirmed by spectroscopic observations. The shape of the color-magnitude diagram agrees approximately with that predicted theoretically for clusters which are so young that the fainter stars are still in the process of contracting gravitationally from the prestellar medium and have not yet reached the main sequence. The age of the cluster given by the point where the cluster stars depart from the main sequence is about 3×10^{6} years.

Herschel was Right!

Star Formation is an ongoing process!

And is subject to direct empirical study.

William Herschel

The Unsolved Problem of Star Formation:
Setting the Boundary and Initial Conditions

BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

Compositions, Luminosities, Temperatures, Sizes, \& Masses

BOUNDARY CONDITIONS

Luminosities, Temperatures, Sizes, \& Masses

BOUNDARY CONDITIONS

Masses

BOUNDARY CONDITIONS

Mass

BOUNDARY CONDITIONS

- Once formed, the entire life history of a star is essentially predetermined by a single parameter: the star's initial mass.

BOUNDARY CONDITIONS

- Once formed, the entire life history of a star is essentially predetermined by a single parameter: the star's initial mass.

The IMF (the frequency distribution of stellar masses at birth) plays a pivotal role in the evolution of all stellar systems from clusters to galaxies.

BOUNDARY CONDITIONS

The Initial Mass Function (IMF) = first fundamental boundary condition

- Once formed, the entire life history of a star is essentially predetermined by a single parameter: the star's initial mass.

The IMF (the frequency distribution of stellar masses at birth) plays a pivotal role in the evolution of all stellar systems from clusters to galaxies.

Fundamental Boundary Conditions

1- The Initial Mass Function (IMF')
Muench et al. 2002

Fundamental Boundary Conditions

1- The Initial Mass Function (IMF')
Muench et al. 2002

Fundamental Boundary Conditions

1- The Initial Mass Function (IMF')
Muench et al. 2002

Fundamental Boundary Conditions

This is perhaps the most fundamental fact concerning star formation that needs to be explained by any theory; some feature of the physics of star formation must yield a characteristic stellar mass that is a little less than one solar mass.

Larson (2005; MNRAS 359, 211.)

$\begin{array}{ll} \text { है } & \\ \sum_{3}^{2} & \\ \text { O } & \\ 0 & 10 \end{array}$

The IMF exhibits a broad peak between 0.6 and $0.1 \mathrm{M}_{\odot}$ suggesting a characteristic mass associated with the star formation process.

Muench et al. 2002

5 (solar masses)

$\begin{array}{lll}0.3 & 0.1 & 0.0\end{array}$
0.01

Fundamental Boundary Conditions

1- The Initial Mass Function (IMF')
Muench et al. 2002

Fundamental Boundary Conditions

1- The Initial Mass Function (IMF')
Muench et al. 2002

Fundamental Boundary Conditions

1- The Initial Mass Function (IMF')
Muench et al. 2002

Fundamental Boundary Conditions

1- The Initial Mass Function (IMF')
Muench et al. 2002

Fundamental Boundary Conditions

2- Stellar Multiplicity

Lada 2006

Fundamental Boundary Conditions

2- Stellar Multiplicity

Lada 2006

Fundamental Boundary Conditions

2- Stellar Multiplicity

Lada 2006

Fundamental Boundary Conditions

2- Stellar Multiplicity

Lada 2006

Fundamental Boundary Conditions

2b- Primordial Stellar Clustering

Fundamental Boundary Conditions

2b- Primordial Stellar Clustering

E. Lada, Depoy, Evans \& Gatley 1991

Fundamental Boundary Conditions

2b- Primordial Stellar Clustering

E. Lada, Depoy, Evans \& Gatley 1991

Fundamental Boundary Conditions

2b- Primordial Stellar Clustering

E. Lada, Depoy, Evans \& Gatley 1991

Fundamental Boundary Conditions

2b- Primordial Stellar Clustering

Spitzer survey
E. Lada, Depoy, Evans \& Gatley 1991

Fundamental Boundary Conditions

2b- Primordial Stellar Clustering

E. Lada, Depoy, Evans \& Gatley 1991

INITIAL CONDITIONS

Initial Conditions

Initial Conditions

Initial Conditions

Star formation confined to relatively dense ($>10^{4} \mathrm{~cm}^{-3}$) gas ($A_{\mathrm{V}}>10 \mathrm{mag}$).

Initial Conditions

Stars form in Dense, Dark Cloud Cores

Initial Conditions = Basic physical properties of starless cores:
mass, size, temperature density, pressure, kinematics

Initial Conditions

The Pipe Nebula

The Pipe Nebula

The Pipe Nebula

The Pipe Nebula

Brooke et al. 2007

The Pipe Nebula

Brooke et al. 2007

The Pipe Nebula

Overall star formation activity is insignificant, confined to 0.1 \% of the total gaseous mass.

Brooke et al. 2007

Distribution of core masses (139 cores)

Mean Core Densities

Frequency Distribution of Core Densities

Mean Core Densities

Frequency Distribution of Core Densities

Median Core Density $=10,000 \mathrm{~cm}^{-3}$

Mean Core Densities

Frequency Distribution of Core Densities

Median Core Density $=10,000 \mathrm{~cm}^{-3}$

Molecular Line Survey

Rathborne et al. 2008

Core to Core Velocity Dispersion $\left(\mathrm{C}^{18} \mathrm{O}\right)$:

Core to Core Velocity Dispersion ($\left.\mathrm{C}^{18} \mathrm{O}\right)$:

$$
\sigma_{p i p e}=0.26-0.28 \mathrm{~km} / \mathrm{s}
$$

Dense cores are thermally supported!

Ratio Thermal to Non-Thermal Pressures

Dense cores are thermally supported!

"Thermal pressure is thus a final irreducible barrier to star formation that remains even after turbulence and magnetic fields have been dissipated." Larson (2005)

Core Mass

Pressure Confinement of Pipe Cores

B 68: Radial Density Profile

Critical Bonnor-Ebert Sphere

Core structure is set by the requirement of pressure equilibrium with external medium!

On the Origin of the Core and Stellar Masses

Stability of Pipe Cores

$$
M_{B E}=1.82\left(n_{4}\right)^{-0.5}\left(T_{10}\right)^{1.5} \quad \text { (solar masses) }
$$

Stability of Pipe Cores

Stability of Pipe Cores

Stability of Pipe Cores

Nearest Neighbors

Nearest Neighbors

Nearest Neighbors

Nearest Neighbors

Nearest Neighbors

Thermal (Jeans) Fragmentation !

Nearest Neighbors

Pipe Nebula Cores

$$
\lambda_{\text {Jeans }}=c_{s}(\pi / G \rho)^{1 / 2}=
$$

$$
0.2\left[\mathrm{~T}_{10}\right]^{1 / 2}\left[\mathrm{n}_{4}\right]^{-1 / 2} \mathrm{pc}
$$

Thermal (Jeans) Fragmentation!

"The Jeans scale must therefore play a key role in at least the final stages of star formation process regardless of what happens during earlier evolution of star-forming clouds." Larson (2005)

On the ORIGIN OF THE CMF/IMF:

On the ORIGIN OF THE CMF/IMF:

A process of thermal-Jeans fragmentation?

On the ORIGIN OF THE CMF/IMF:

$C M F\{\log m\}=c_{1} \psi\left(\log \left\{m / m_{0}\right\}, s_{i}\right) ;$

On the ORIGIN OF THE CMF/IMF:

$C M F\{\log m\}=c_{1} \psi\left(\log \left\{m / m_{0}\right\}, s_{i}\right) ; \quad m_{0}=m_{B E}$

** $\mathrm{m}_{\mathrm{BE}}=$ Constant $\times \mathbf{a}^{\mathbf{4}}\left(\mathrm{P}_{\text {surface }}\right)^{-\mathbf{0 . 5}}$ Bonnor-Ebert Mass Scale

On the ORIGIN OF THE CMF/IMF:

$C M F\{\log m\}=c_{1} \psi\left(\log \left\{m / m_{0}\right\}, s_{i}\right) ; \quad m_{0}=m_{B E}^{* *}$
$\operatorname{IMF}\{\log m\}=c_{2} \psi\left(\log \left\{m / m_{c}\right\}, s_{k}\right) ;$

** $\mathrm{m}_{\mathrm{BE}}=$ Constant $\mathbf{x ~ a ~} \mathbf{a}^{\mathbf{4}}\left(\mathbf{P}_{\text {surface }}\right)^{-\mathbf{0 . 5}}$ Bonnor-Ebert Mass Scale

On the ORIGIN OF THE CMF/IMF:

$C M F\{\log m\}=c_{1} \psi\left(\log \left\{m / m_{0}\right\}, s_{\mathrm{i}}\right) ; \quad m_{0}=m_{\mathrm{BE}}^{{ }^{* *}}$
$\operatorname{IMF}\{\log m\}=c_{2} \psi\left(\log \left\{m / m_{c}\right\}, s_{k}\right) ; m_{c}=S F E m_{B E}$

** $\mathrm{m}_{\mathrm{BE}}=$ Constant $\mathbf{x ~ a} \mathbf{a}^{\mathbf{4}}\left(\mathrm{P}_{\text {surface }}\right)^{-\mathbf{0 . 5}}$ Bonnor-Ebert Mass Scale

The Star Formation Rate: Scaling the IMF

The Star Formation Rate: Scaling the IMF
$\operatorname{IMF}\{\log m\}=c_{2} \psi\left(\log \left\{m / m_{c}\right\}, s_{k}\right): m_{c}=$ SFE $m_{B E}$

The Star Formation Rate: Scaling the IMF
$\operatorname{IMF}\{\operatorname{logm}\}=c_{2} \psi\left(\log \left\{m / m_{c}\right\}, s_{k}\right): m_{c}=$ SFE $m_{B E}$

Yield $=S F R \times \Delta t$

The Star Formation Rate: Scaling the IMF
$\operatorname{IMF}\{\log m\}=c_{2} \psi\left(\log \left\{m / m_{c}\right\}, s_{k}\right): m_{c}=S F E m_{B E}$

The California Molecular Cloud

Comparing the California and Orion Molecular Clouds

Comparing the California and Orion Molecular Clouds
The two clouds are nearly identical in mass \& size

Comparing the California and Orion Molecular Clouds

The two clouds are nearly identical in mass \& size

$$
\begin{aligned}
& \text { YSOs(Orion) > } 10 \times \text { YSOs(Califoria) } \\
& S F R(\text { Orion) > } 10 \times S F R \text { (California) }
\end{aligned}
$$

Comparing the California and Orion Molecular Clouds

The two clouds are nearly identical in mass \& size

YSOs(Orion) > $10 \times$ YSOs(Califoria)
SFR(Orion) > $10 \times S F R$ (California)

Comparing the California and Orion Molecular Clouds

The two clouds are nearly identical in mass \& size

YSOs(Orion) > $10 \times$ YSOs(Califoria)
SFR(Orion) > $10 \times S F R$ (California)

Comparing the California and Orion Molecular Clouds

The two clouds are nearly identical in mass \& size

YSOs(Orion) > 10 x YSOs(Califoria)
$S F R$ (Orion) > $10 \times S F R$ (California)

OMC has $10 x$ as much material at $A_{V}>10$ mag as the CMC

Comparing the California and Orion Molecular Clouds

The two clouds are nearly identical in mass \& size

YSOs(Orion) > 10 x YSOs(Califoria)
$S F R$ (Orion) > $10 \times S F R$ (California)

OMC has 10 x as much material at $A_{V}>10$ mag as the CMC

Or $10 x$ as much gas at $n\left(H_{2}\right)>10^{4} \mathrm{~cm}^{-3}$ than CMC

Comparing the California and Orion Molecular Clouds

The two clouds are nearly identical in mass \& size

YSOs(Orion) > $10 \times$ YSOs(Califoria)
SFR(Orion) > $10 \times S F R$ (California)

OMC has 10 x as much material at $A_{V}>10$ mag as the CMC
Or $10 x$ as much gas at $n\left(\mathrm{H}_{2}\right)>10^{4} \mathrm{~cm}^{-3}$ than CMC

What determines the Star Formation Rate?

In external galaxies global star formation rate correlates directly with amount of dense gas

What determines the Star Formation Rate?

$\mathrm{SFR} \sim \mathcal{M}_{\mathscr{D G}}$

In external galaxies global star formation rate correlates directly with amount of dense gas

What determines the Star Formation Rate?

SFR $\sim \mathcal{M}_{\mathscr{D G}}$

In external galaxies global star formation rate correlates directly with amount of dense gas

What determines the Star Formation Rate?

$S F R \sim M_{\mathscr{D G}}$

What determines the Star Formation Rate?

$S F R \sim M_{\mathscr{D G}}$

What determines the Star Formation Rate?

$\mathrm{SFR} \sim \mathcal{M}_{\mathscr{D} G}$
$\operatorname{SFR}=\varepsilon_{\mathrm{SF}} M_{\text {©G }} / \tau_{\mathrm{SF}}$

What determines the Star Formation Rate?

SFR $\sim M_{\mathscr{D G}}$

SFR $=\varepsilon_{\text {SF }} M_{\text {DG }} / \tau_{\text {SF }}$

If: $\mathrm{SFR} \sim M_{\mathscr{D G}}$

What determines the Star Formation Rate?

SFR $\sim \mathcal{M}_{\mathscr{D G}}$
$\mathrm{SFR}=\varepsilon_{\mathrm{SF}} \mathcal{M}_{\mathscr{D} G} / \tau_{\mathrm{SF}}$

If: $\quad \mathrm{SFR} \sim \mathcal{M}_{\mathscr{D G}}$ Then: $\tau_{S F}=$ const.

What determines the Star Formation Rate?

SFR $\sim M_{\mathscr{D G}}$

$$
\operatorname{SFR}=\varepsilon_{\mathrm{SF}} \mathcal{M}_{\mathscr{D G}} / \tau_{\mathrm{SF}}
$$

If: $\mathrm{SFR} \sim \mathcal{M}_{\oplus G}$ Then: $\tau_{\mathrm{SF}}=$ const.

And this implies a density threshold for star formation:

What determines the Star Formation Rate?

$\mathrm{SFR} \sim \mathcal{M}_{\mathscr{D G}}$

$$
\operatorname{SFR}=\varepsilon_{\mathrm{SF}} \mathcal{M}_{\mathscr{D G}} / \tau_{\mathrm{SF}}
$$

If: $\mathrm{SFR} \sim \mathcal{M}_{\oplus G}$ Then: $\tau_{\mathrm{SF}}=$ const.

And this implies a density threshold for star formation:

$$
\tau_{\mathrm{SF}} \sim \tau_{\mathrm{ff}} \sim\left(G \rho_{\mathrm{t}}\right)^{-1 / 2}
$$

The End

KPNO Summer 1970

KPNO Summer 1970

