AM CVn stars	Models	Populations	Magnetic-braking	Conclusions

Magnetic capture and the CV formation channel for AM CVn stars

Marc van der Sluys

Northwestern University, Evanston, IL, USA

Lev Yungelson Institute of Astronomy, Moscow, Russia

Gijs Nelemans Radboud University Nijmegen, The Netherlands

Wild stars in the Old West II, Tucson, March 17, 2009

・ロット (雪) (日) (日)

AM CVn stars	Models 00000	Populations	Magnetic-braking	Conclusions
Outline				

- Properties of AM CVn stars
- Magnetic capture

2 Models

Binary-evolution models

Populations

- CV populations
- Ultra-compact populations

Magnetic-braking

Dependency on choice of MB

AM CVn stars ●○○	Models 00000	Populations	Magnetic-braking	Conclusions
AM CVn sta	ars			

STERN

Properties

- 23 systems known
- Short orbital periods: 5–65 min
 - degenerate or semi-degenerate donor
 - low-frequency gravitational-wave sources
- Helium-dominated spectra
 - No traces of H found
 - H/He $\lesssim 10^{-5}$
- Possible donors
 - He/CO white dwarf
 - helium star
 - evolved main-sequence star

AM CVn stars ○●○	Models	Populations	Magnetic-braking	Conclusions
Magnetic	cantura			

Magnetic capture

- Donor star fills Roche lobe around TAMS
- Magnetic braking on donor removes AM from orbit
- AM loss due to GWs takes over at short orbital periods
- Periods below 70–80 min possible

(a)

Podsiadlowski et al., 2003

- MB: Verbunt & Zwaan, 1981; Rappaport, Verbunt & Joss, 1983
- *M*_{WD} : 0.6 1.0 *M*_☉
- $M_{2,i}: 0.8 1.4 \, M_{\odot}$
- $t_{\rm RLOF} \sim 7 11 \, {\rm Gyr}$
- $t_{P_{\min}} \sim {
 m few}\,{
 m Gyr}$
- $P_{\rm min}$ down to ~ 10 min

イロト イポト イヨト イヨト

•
$$X_{
m H} \sim 1-20\%$$

AM CVn stars	Models ●○○○○	Populations	Magnetic-braking	Conclusions		
Rinary avalution models						

- Eggleton's *TWIN* binary-evolution code (Eggleton 1971, 1972, etc., Pols et al., 1995)
- MB: Rappaport, Verbunt & Joss, 1983; $\gamma = 4$:
 - MB decreases as $\exp\left(1 \frac{0.02}{q_{\text{conv}}}\right)$ for $q_{\text{conv}} \equiv \frac{M_{\text{conv}}}{M_*} < 0.02$ (Podsiadlowski et al., 2002)
 - No MB if $q_{\rm conv} = 1$

oiulioi

- Analytic GW evolution after P_{min}
- Mass transfer fully non-conservative
- $M_{\rm WD} = 1.0 \, M_{\odot}; M_{2,i} = 0.7 1.5 \, M_{\odot}$
- $P_{
 m i} \sim$ 0.4 5.5 days; \sim 20–40 models per $M_{
 m 2,i}$

AM CVn stars	Models ○●○○○	Populations	Magnetic-braking	Conclusions

Period evolution

AM CVn stars	Models	Populations	Magnetic-braking	Conclusions
	00000			

Timescales

AM CVn stars	Models	Populations	Magnetic-braking	Conclusions
	00000			

Convective mass fraction

t (Gyr)

< ロ > < @ > < E > < E > E のQC

UNIVERSITY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣ゑ

AM CVn stars	Models 00000	Populations ○●○○	Magnetic-braking	Conclusions

Period histogram

▲日と▲聞と▲臣と▲臣と 臣 ∞

AM CVn stars	Models	Populations	Magnetic-braking	Conclusions
			000	

Choice of magnetic-braking prescription

Rappaport, Verbunt & Joss

$$\frac{dJ_{\rm MB}}{dt} = -3.8 \times 10^{-30} \ \eta \ \left(\frac{M}{M_{\odot}}\right) \left(\frac{R}{R_{\odot}}\right)^4 \omega^3 \ \mathrm{dyn} \ \mathrm{cm}$$

Sills et al., 2000; Andronov et al., 2003

$$\frac{dJ_{\rm MB}}{dt} = -K \left(\frac{R}{R_{\odot}}\right)^{0.5} \left(\frac{M}{M_{\odot}}\right)^{-0.5} \omega^{3}, \qquad \omega \leq \omega_{\rm crit}$$

$$= -K \left(\frac{R}{R_{\odot}}\right)^{0.5} \left(\frac{M}{M_{\odot}}\right)^{-0.5} \omega \omega_{\rm crit}^{2}, \qquad \omega > \omega_{\rm crit}$$

 $K = 2.7 \times 10^{47} \,\mathrm{g \, cm}^2 \,\mathrm{s}; \quad \omega_{\mathrm{crit}} = \omega_{\mathrm{crit},\odot} \, \frac{\tau_{\mathrm{to},\odot}}{\tau_{\mathrm{to}}}; \quad \omega_{\mathrm{crit},\odot} \approx 2.5 \,\mathrm{day}$

.....KSITY

ъ

・ロット (雪) (日) (日)

AM CVn stars	Models	Populations	Magnetic-braking ○●○	Conclusions
	_			

Saturated magnetic braking

(日)

AM CVn stars	Models	Populations	Magnetic-braking	Conclusions

Conclusions & to do

Conclusions

- With the magnetic-capture scenario, a relatively large number of ultra-compact CVs can be produced
- A sizable fraction of these have $X_{\rm H} < 10^{-5}$ and would be observed as AM CVn stars
- If H-poor, ultra-compact CVs would be observed as AM CVns, we would expect many H-rich systems
- A saturated magnetic-braking prescription increases the minimum period found from \sim 10 min to \sim 75 min

To do

- Expand range of WD-accretor masses
- Convert relative numbers to absolute number of systems in the Galaxy
- Find observable distinction between He-WD channel and CV-channel AM CVn stars

STERN

ヘロト 人間 とく ヨ とく ヨ と