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SNe .Ia: A Brief Overview
(Bildsten, KS, Weinberg, & Nelemans ‘07)

AM CVn evolution naturally yields unstable He-burning shells of ~ 0.1 Msol

Hydrostatic calculation shows these shells burn hydrodynamically, potentially
yielding He detonations; the majority of the talk will go into detail

Small ejecta mass — short lifetimes (~5-10 days), 10% as bright as SNe Ia
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e _larate is few percent of Ia rate in
an old population

e SDSS SN (r=22.5; 280 deg?; 2
day cadence) gets 0.5 — 7 .Ia/yr
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 PS-1 medium-deep survey (V =
24; 50 deg?; 4 day cadence) gets
1 — 10 .Ia/yr
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AM CVn accretion outcome: He-burning

Initially, very low P_, <4 min
& high Mdot > 10-° Msol/yr:
stable He-burning (Tutukov &
Yungelson ‘96; KS & Bildsten
‘07; SSSs)

Binary evolves to lower Mdot:
~10 unstable helium novae

(Iben & Tutukov ‘89)

Eventually, M

donor < Mign:
— No novae < 10-® Msol/yr
and above 10 min, just He

accretion

— Last flash has largest
My, ~ 0.1 Msol
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Progress of the convective phase

He-burning injects entropy into the convective (isentropic) shell, raising 7

Tds = du + PdV
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Need to be consistent with hydrostatic equilibrium because M, , can be large
e Initially no expansion work done b/c P, ~ GM .M, /47R*, but then T, ~ T,
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Small M, : He nova

0.1 My ] ¢ Forsmaller envelopes < 102 Msol,
entropy increase eventually leads to
expansion. Like a hydrogen classical
nova in a regular CV: helium nova
(e.g., V445 Pup)
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Large M, ,: He shell detonation!

* For larger envelopes, the heating timescale can become shorter than the
dynamical timescale:

CpT

theat —
€nuc

; P
P |y
e

| —

» Heat is injected faster than shell can 5
respond and maintain hydrostatic
equilibrium: large overpressure,
dynamical explosion: likely outcome
1s a detonation!

e There 1s a minimum M__, that can
detonate




Many AM CVn’s should undergo He detonations

e Last flash for each system is the biggest
e For M, . > 0.8 Msol, last flash should be dynamical / detonation
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Initial abundances for detonation
e Determines:
— neutron-to-proton ratio / Y, — 1sotopic yield

— likelihood that detonation will propagate (ZND length)
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a-chain elements (1°C, 1°0, ?°Ne, >*Mg, etc.)

* Lower limit set by triple-a burning — X,,- ~ 0.01-0.05
e Butdredge-up may yield X,/ 0008 ~ 0.1 (depending on WD core)

o g 1 ¢ To see if given isotope hangs
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e a-chain elements unburned
when detonation begins

e At post-shock 7> 10° K, a-
chain elements burn as fast as
or faster than triple-«

e So ZND length is shorter than
for pure He




4N(at, 1)15F(a, p)*'Ne
e Majority of accreted metals are “N due to donor’s CNO-processing —
X~ 0.01

e Timescales too short for '8F to S-decay (t,, = 110 min) — ¥, unchanged
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e Post-shock a-capture on '8F
yields proton

* Proton catalyzes slow step of
a-chain via ?C(p, v)N(a,
)10 (Weinberg et al. ‘06)

e Further reduces ZND length!

e Self-propagating detonation
more likely

e Hydrodynamic studies must
include these elements




Conclusions

e AM CVn evolution leads to dynamical He shell explosions: .Ia supernovae

— Quick rise of a few days, 10% as long as SNe Ia, allowing short-lived
radioactivity to be seen

— Peak of M, =-17 to -15, 10% as bright as SNe Ia
— AM CVn birth rate gives upper limit of a few percent of the Ia rate

— Upcoming (and maybe current) optical surveys should see a few every year!
(And SN2008ha [Foley et al. ‘09] is close...)

e Trace elements (1?C/1°0O/*°Ne & '“N) important for detonation
— Won’t change Y, and 1sotopic yield
— BUT can significantly affect ZND length and likelihood of propagation
— Future hydro simulations must take these into account

* (Calculation also applicable to He core flash; see paper for more details

e Many thanks to Lars Bildsten and our collaborators



Ja Light Curves (courtesy of D. Kasen [UCSC])

e Radiative transfer of expanding *5Ni and *°Ni/?8Si balls

° Mpeak,B=—18t0—15,Am15=3_4 k\
17

* Compare to SNe Ia, including

subluminous ones, from
Phillips et al. (2007):

B Band Absolute Magnitude (times minus one)
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