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Outline
Compressional heat release and the quiescent Teff

Long-term accretion variation and Teff

Quiescent Teff in magnetics

Comparing wind braking, magnetics and non-magnetics

Testing improved wind braking laws
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Heat Sources
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Heat liberated by compression is transferred out to surface
and in to core. Often called “compressional heating”.

Heat sources:

Accretion light: only very near surface while actively
accreting

Compression: throughout star, mostly in light-element
layer (really gravitational potential energy)

Nuclear “simmering”: fusion near base of accreted layer
(eventually becomes fast and triggers classical nova)

Core heat capacity
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Quasi-static Profile
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y = ∆M/4πR2 ≈ P/g is column depth.

Thermal state set by flux from deeper
layers rather than from fluid element’s

history.
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where ṁ = Ṁ/4πR2 is the instantaneous accretion rate. In steady-state, flux equals
compressionally liberated energy

L ≃
kTc

µmp
〈Ṁ〉

Energy release related to heat content of compressed material.
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QuiescentTeff

In steady state, under constant Ṁ = 〈Ṁ〉, quiescent surface has

Teff = 1.7 × 104 K

„

〈Ṁ〉

10−10M⊙ yr−1

«1/4 „

M

0.9M⊙

«

Can be inverted for 〈Ṁ〉, but there is a nasty M dependence.

More directly useful for
comparing evolutionary
expectations to data

Important question: how
robust is Teff as indicator of
actual average Ṁ?
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Effects of changingṀ
Evolution of thermal profile
Ṁ alternating between 1 and 9 × 10−11M⊙ yr−1 on two different timescales

103 yr 105 yr

Longer timescale variations reach deeper into the envelope
and cause more variation in surface flux.
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Time dependence ofTeff
Response to moderately long timescale variations
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〈Ṁ〉 = 5 × 10−11, M = 0.9M⊙

With no information about cycle, this introduces an uncertainty in what 〈Ṁ〉
corresponds to the observed Teff .
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Timescale and variation
In steady state
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Contribution to surface flux dependends logarithmically on local thermal time.

Contribution from layer will change on its thermal time
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Higher 〈Ṁ〉 has shorter thermal
times

Reaching degenerate portion of
envelope lenthens thermal time

flux profile simulation
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Heating in Magnetics
Material is confined to poles until P ∼ 1015(g8ℓ8B2

7)5/7 erg cm−3

After spreading over star, compressional energy release as in nonmagnetic case
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60-80% of non-magnetic
quiescent luminosity emerges
away from polar regions

Heat released at shallow depths
will be near poles

Due to deep energy deposition will
be even less sensitive to Ṁ varia-
tions
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Mag Braking and Polars
Sample favoring least ambiguous measurements of Teff,q, • nonmag, ⋄ mag

Interrupted magnetic
braking evoluton from
Howell, Nelson,
Rappaport 2001, ApJ,
550, 897
Kolb & Baraffe 1999,
MNRAS, 309, 1034

GR only evolution from
secondary M -R
relation in HNR01
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Clear contrast between non-magnetics and magnetics in 3.5-5 hour range.

Magnetics consistent with GR losses at all periods.
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Improving MB treatments
Sample favoring least ambiguous measurements of Teff,q, • nonmag, ⋄ mag

Empirical fit from
Patterson 1984, ApJS,
54, 443

Howell, Nelson,
Rappaport 2001, ApJ,
550, 897

Ivanova & Taam 2004,
ApJ, 601, 1058

Andronov,
Pinsonneault, Sills
2003, ApJ, 582, 358 1 2 3 4 5
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Classic IMB a bit high

Laws consistent with DN will may have period gap problem

VY Scl stars far above MB
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Hibernation
Overestimate of 〈Ṁ〉 due to extended
intervals of accretion quiescence
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CVs are only identified while
accretion is active

Thus long-term hibernation intervals
with low duty cycles can cause Teff to
overestimate the true average of Ṁ .

Lq,active

Lq(〈Ṁ〉)
= 1 +

2R(tactive)

f

f = duty cycle
R(tactive) = response function

Proximity to 〈Ṁ〉 floor due to GR
limits f for low 〈Ṁ〉 systems

Scatter among several systems may
reveal transients
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Conclusions
Unconstrained long-term variations of Ṁ may influence observed Teff .
Less so for low 〈Ṁ〉 systems.

Clear contrast between magnetic and non-magnetic systems in the 3-5 hour period
range. Implies that wind braking is disrupted by WD magnetic field.

Classic IMB (HNR01) has 〈Ṁ〉 somewhat higher than DN above gap. Newer
relations more consistent with data, may have problems with period gap. (?)

Appears that there is a class of novalikes at 3-3.5 hours (VY Scl/SW Sex) which
have 〈Ṁ〉 much higher than even predicted by wind braking.

True hibernation scenarios with low duty cycles and high Ṁ during active times are
difficult to constrain with Teff . May improve with more Teff measurements.
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