

Roche tomography of the donor stars in CVs

Motivation - Understanding binary evolution

Understand magnetic activity in binaries

- understand CV evolution
- understand their behaviour?

Motivation - Stellar dynamo theory

CVs and interacting binaries in general provide excellent labs for the study of;

- rapid rotation on magnetic activity
- tidal effects on stellar dynamos
- the effects of activity on accretion dynamics

Motivation - Starspots & accretion dynamics

Hessman, Gänsicke & Mattei (2000)

Roche tomography - Technique

Direct images of the donor stars are impossible as they are

- typically several hundred parsecs distant
- have radii of ~400,000 km

This means that to resolve the star, we would require a ~100km class telescope!

ast Receipt

Roche tomography - Technique

Roche Tomography - Detecting star spots II III IV V III IV Ι II Ι

Star spots produce emission bumps in donor star line profiles.

Typically, the largest star spot distortions are ~10% of the profile depth.

Roche tomography - LSD

Roche tomography - AE Aqr (2001)

AE Aqr - 9.9hr period

Observations taken on 2 consecutive nights.

WHT+UES Simultaneous JKT Photometry

Watson et al. (2006)

Receile

Roche tomography - BV Cen

Magellan + MIKE echelle spectroscopy Simultaneous Photometry (I-m Henrietta Swope)

Watson, Steeghs, Shahbaz & Dhillon (2007)

Rasie

Roche tomography - RU Peg

RU Peg (novalike) observed with WHT+ISIS in high state (See poster by Robert Smith, Alex Dunford & myself)

Roche tomography - V426 Oph

No pronounced polar spot. Caught in a year long <low> state.

Orbital Period = 6.8 hours

Magellan + MIKE echelle spectroscopy Simultaneous Photometry (I-m Henrietta Swope)

Watson, Steeghs, Dhillon & Shahbaz (2007)

Roche tomography - Spot distributions

Seeing the impact of Coriolis + Tidal forces?

Roche tomography - Spot distributions

High spot coverages found around the mass transfer nozzle.

Close to predictions by modeling light curves.

Roche tomography - Slingshot prominences

Emission feature observed outside stellar line profile. Observed at phases $0.328 \rightarrow 0.366$ Also at phases $1.974 \rightarrow 2.038$

Centred on systemic velocity of BV Cen.

Illuminated by irradiation?

Roche tomography - AE Aqr (2004)

2001 parameters $i = 66^{\circ}$ $M_2 = 0.50 M_{\odot}$ $M_1 = 0.74 M_{\odot}$ 2004 parameters $i = 64^{\circ}$ $M_2 = 0.53 M_{\odot}$ $M_1 = 0.82 M_{\odot}$

Roche tomography - Spot distributions

Roche tomography - Conclusions(?)

CV donor stars show large spot coverages (e.g. AE Aqr ~20%; BV Cen ~25%)

High spot coverages near mass transfer nozzle:

- seeing influence of tidal forces on magnetic tube emergence?
- launching site of 'slingshot' prominences?
- blobby magnetized accretion stream/flickering?

All but V426 Oph show prominent high latitude spots

V426 Oph seen in low-state

• link between activity cycle and accretion rate?

Possible deflection of 'polar' spots?