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The period bounce problem

✤ 70% of CVs should have passed period minimum (Kolb 1993)

✤ A handful of plausible candidates exist
e.g.
GD 552 - Unda-Sanzana et al 2008, Patterson, Thorstensen & Kemp 2005 
RXJ 1050-14 - Mennickent et al 2001, PTK 2005)
Superhumpers? (Patterson et al 2005)

✤ But not one definite period bouncer...

‘...as recently as the 2004 Strasbourg meeting, Tom Marsh turned to the 
audience and asked: “Does anyone know the names of these stars?”...and 

was answered by silence’ - Patterson (2009; submitted)



The solution

✤ Period bounce CVs are faint; deeper surveys are needed (Pretorius et 
al 2007)

✤ Major advance with SDSS CV Survey
(Szkody et al 2002, Szkody et al 2003, Szkody et al 2004, Szkody et al...)

✤ SDSS turned up plenty of faint, short period CVs (see Tuesday talk by 
Gänsicke), but we still need donor masses, and donors are too faint to 
detect...



Photometric mass determination

✤ First applied by Wood et al (1986); component masses from eclipse

✤ Assumptions!

✤ Donor fills Roche Lobe

✤ Bright spot lies along free-fall gas stream trajectory ⇒ q

✤ not necessarily where stream hits disc

✤ White dwarf follows theoretical mass-radius relationship ⇒ Mw

✤ [We see light from whole surface of white dwarf]



Those pesky assumptions

✤ Donor fills Roche Lobe

✤ Bright spot lies along free-fall gas stream trajectory

✤ White dwarf follows theoretical mass-radius relationship

✤ [We see light from whole surface of white dwarf]

✔

✘

✘

✘



Independent tests of method

✤ Compare photometric qphot with purely spectroscopic qspec

✤ Agreement within 1σ (V2051 Oph, EX Dra - Feline et al 2005)

✤ But 1σ = 0.05, so claimed precisions in qphot of 0.002-0.003 untested

✤ IP Peg (Marsh Poster, this conference) c.f. K2 from Roche Tomography 
(Watson et al 2003):

ΔK2 ≈ 12 ± 12 kms-1

✤ SDSS 1433 (Tulloch Poster, this conference) c.f. Littlefair et al (2008)



The role of ULTRACAM

✤ Requirements:

✤ time resolution ~3s

✤ simultaneous multi-colour

✤ for g’~19 (out of eclipse)!

✤ This talk is thanks to 
ULTRACAM!



Results

✤ New analysis using Markov-Chain Monte-Carlo method

✤ more robust parameter estimates and errors

✤ Present re-analysis of CVs from Littlefair et al (2008, 2006a,b) & Feline 
et al (2004a,b)

✤ Masses (and errors!) confirmed with two exceptions

✤ OU Vir: slightly lower mass (old mass used timing method)

✤ SDSS J1501: mass ratio, q, not well constrained - needs more data



Results - Donor star masses



We know their names...



Results - Donor star masses

✤ Not a good fit - not news

✤ Pmin problem told us this for 
years (e.g. Patterson 1998, 
Barker & Kolb 2003)

✤ Superhumpers tell the same 
story (Patterson et al 2005; 
Knigge 2006)

✤ Donor Stars are too large

✤ Why?



Stellar Models?

✤ We know radii of low-mass 
eclipsing binaries are also too 
large (e.g. Ribas 2006)

✤ Also seen in single M-dwarfs 
(Cassagrande, Flynn & Bessel 
2008)

✤ Missing opacity (CFB 2008)?

✤ Magnetism (Chabrier et al 
2007)?
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Figure 1. Top: Mass-radius plot for stars in the lower main sequence with empirical
determinations. The solid line represents a theoretical 300 Myr isochrone calculated
with the Baraffe et al. (1998) models. Bottom: Same as above for those stars with
determinations of masses and radii better than 3% (double-lined EBs).

The sample we have used in our comparison may be representative of
the population of active M-type stars only. This does not diminish the
relevance of the discrepancy between models and observations. Low-
mass stars with ages younger than a few Gyr are very active because
they are generally fast rotators. Therefore, not only a star in a close
binary system but any active M-type star (e.g., in a stellar cluster)

ribas.tex; 30/05/2008; 13:05; p.7

Ribas (2006)



Angular Momentum Loss?

✤ AML below the period gap is assumed to be solely GR

✤ Faster AML/accretion drives donor from thermal equilibrium ⇒ 
larger donor

✤ Observations of single stars show magnetic wind braking still present in 
low mass stars AND brown dwarfs (Reiners & Basri 2008)

✤ is it comparable to AML from GR?



Starspots or AML?



Starspots or AML?

✤ Decent estimate of long term AML rate from white dwarf temperature

(see talk by Dean Townsley after lunch)

✤ We get temperature for WD from u’g’r’ colours of white dwarf 
eclipse!



Angular Momentum Loss?

Willems et al (2005) dm/dt x 2

White Dwarf Temperatures not consistent with 2x GR



Aside: white dwarf masses

✤ All of our white dwarf masses 
are >0.8M☉

✤ Not a selection effect

✤ 40-80% of short period CVs 
should have Helium WDs 
(Willems et al 2005)

✤ None in our sample
(see talk by Lars Bildsten, Tues)



Conclusions

✤ Mining of SDSS for CVs has been major breakthrough

✤ Photometric mass determination works, and shows that SDSS CVs 
contain period bouncers in significant numbers (good news!)*

✤ Masses and radii poorly fit by models (not news!)

✤ White dwarf temperatures suggest this is not enhanced AML 
(definitely news!)

✤ Urgently need independent confirmation of AML loss rates

*for theorists


