Stellar Velocity Dispersion Measurement of Luminous Quasar Host Using Laser Guide Star Adaptive Optics

Linda Watson Ohio State University AAS – June 11, 2009

Catherine Grier Laura Ferrarese Paul Martini Kalliopi Dasyra Misty Bentz

Bradley Peterson Richard Pogge Linda Tacconi

Motivation

- Determine location of high-luminosity (high-mass) quasars on $M_{\rm BH}$ \mathbb{W} relation
- Determine whether AGN broad-line region geometry depends on luminosity

Gultekin et al. (2009)

Motivation

- Determine location of high-luminosity (high-mass) quasars on M_{BH} \mathbb{W} relation
- Determine whether AGN broad-line region geometry depends on luminosity

Onken et al. (2004), Nelson et al. (2004), Bentz et al. (2006), Denney et al. (2006)

AGN Black Hole Mass Estimates

• Most direct method to measure AGN black hole masses is through reverberation mapping:

$$M_{\rm BH} = f \frac{R_{\rm BLR}(\Delta V)^2}{G}$$

- R_{BLR}: derived from time delay between continuum and emission line variations
- WV: measure of the BLR velocity
- Scale factor f accounts for unknown geometry of BLR
- We measured the bulge stellar velocity dispersion for the host of a luminous quasar: PG 1426+015

Gemini North Observations of PG 1426+015

- Altair laser guide star adaptive optics (LGS AO) system
 - LGS AO concentrates quasar emission into central few pixels
- Near-Infrared Integral Field Spectrometer (NIFS)
 - IFU captures more host galaxy light than longslit spectrograph

Velocity Dispersion Measurement

- Velocity dispersion measured using Penalized Pixel
 Fitting method of Cappellari & Emsellem (2004)
- K5 III, M1 III, and M5 Ia templates

Velocity Dispersion Measurement

- Velocity dispersion measured using Penalized Pixel
 Fitting method of Cappellari & Emsellem (2004)
- K5 III, M1 III, and M5 Ia templates

PG 1426+015 on the M_{BH} - \square Relation

- PG 1426+015 lies above the $M_{\rm BH}$ \mathbb{W} relation
- Possible reasons:
 - Scale factor, *f*, may be different for different populations
 - Selection bias
 - Small number statistics

PG 1426+015 on the M_{BH} - \square Relation

- PG 1426+015 lies above the $M_{\rm BH}$ \mathbb{W} relation
- Possible reasons:
 - Scale factor, *f*, may be different for different populations
 - Selection bias
 - Small number statistics

PG 1426+015 on the M_{BH} - \square Relation

- PG 1426+015 lies above the $M_{\rm BH}$ \mathbb{W} relation
- Possible reasons:
 - Scale factor, *f*, may be different for different populations
 - Selection bias
 - Small number statistics

Conclusions

- Used the Gemini North Near-Infrared Integral Field Spectrometer (NIFS) and laser guide star adaptive optics to measure the stellar velocity dispersion in the host of a luminous quasar
- PG 1426+015 lies significantly above the quiescent galaxy $M_{\rm BH}$ \mathbb{W} relation
- More observations will help to determine why high-mass quasars seem to lie above the $M_{\rm BH}$ \mathbb{W} relation

Extras

 10^{10}

• Lauer et al. (2007) selection bias: