
Linda Watson
Ohio State University
AAS – June 11, 2009

Catherine Grier
Paul Martini
Kalliopi Dasyra
Misty Bentz

Laura Ferrarese
Bradley Peterson
Richard Pogge
Linda Tacconi
Motivation

- Determine location of high-luminosity (high-mass) quasars on M_{BH} - \mathcal{V} relation
- Determine whether AGN broad-line region geometry depends on luminosity

Gultekin et al. (2009)
Motivation

• Determine location of high-luminosity (high-mass) quasars on $M_{BH} - \mathbb{W}$ relation

• Determine whether AGN broad-line region geometry depends on luminosity

Onken et al. (2004), Nelson et al. (2004), Bentz et al. (2006), Denney et al. (2006)
AGN Black Hole Mass Estimates

- Most direct method to measure AGN black hole masses is through reverberation mapping:

\[M_{BH} = f \frac{R_{BLR}(\Delta V)^2}{G} \]

- \(R_{BLR} \): derived from time delay between continuum and emission line variations
- \(\Delta V \): measure of the BLR velocity
- Scale factor \(f \) accounts for unknown geometry of BLR

- We measured the bulge stellar velocity dispersion for the host of a luminous quasar: PG 1426+015
Gemini North Observations of PG 1426+015

• Altair laser guide star adaptive optics (LGS AO) system
 - LGS AO concentrates quasar emission into central few pixels

• Near-Infrared Integral Field Spectrometer (NIFS)
 - IFU captures more host galaxy light than longslit spectrograph
Velocity Dispersion Measurement

- K5 III, M1 III, and M5 Ia templates

- $\sigma = 217 \pm 15$ km/s
Velocity Dispersion Measurement

- K5 III, M1 III, and M5 Ia templates
- $\sigma = 217 \pm 15$ km/s
PG 1426+015 on the M_{BH} - σ_* Relation

- PG 1426+015 lies above the M_{BH} - σ_* relation

- Possible reasons:
 - Scale factor, f, may be different for different populations
 - Selection bias
 - Small number statistics
PG 1426+015 on the $M_{BH} - \sigma_*$ Relation

- PG 1426+015 lies above the $M_{BH} - \sigma_*$ relation

- Possible reasons:
 - Scale factor, f, may be different for different populations
 - Selection bias
 - Small number statistics
PG 1426+015 on the M_{BH} - σ_* Relation

- PG 1426+015 lies above the M_{BH} - σ_* relation

- Possible reasons:
 - Scale factor, f, may be different for different populations
 - Selection bias
 - Small number statistics

Grier et al., in prep.
Conclusions

• Used the Gemini North Near-Infrared Integral Field Spectrometer (NIFS) and laser guide star adaptive optics to measure the stellar velocity dispersion in the host of a luminous quasar

• PG 1426+015 lies significantly above the quiescent galaxy M_{BH} - \mathbb{W} relation

• More observations will help to determine why high-mass quasars seem to lie above the M_{BH} - \mathbb{W} relation
• Lauer et al. (2007) selection bias: