Testing Substellar Models with Keck LGS AO Dynamical Masses

Trent Dupuy (IfA/Hawaii)

Liu et al., Allers et al., Biller et al., in prep.

It is very important to test substellar theoretical models.

le

Directly imaged planets

и b c

Initial Mass Function

To test substellar models we are measuring dynamical masses.

Trent Dupuy (IfA/Hawaii)

Keck LGS AO program targets ~30 binaries over ~3 years.

Carefully selected binaries likely to complete enough of their orbit by 2010.

Trent Dupuy (IfA/Hawaii)

- Orbit fit using Markov Chain Monte Carlo
- Astrometric errors derived from Monte Carlo simulations of artificial binaries
- Covariances tracked in analysis (e.g., M_{tot} and L_{bol} correlated via distance)

Trent Dupuy (IfA/Hawaii)

- Orbit fit using Markov Chain Monte Carlo
- Astrometric errors derived from Monte Carlo simulations of artificial binaries
- Covariances tracked in analysis (e.g., M_{tot} and L_{bol} correlated via distance)

Substellar model tests

- 1. Do models predict the luminosity evolution of substellar objects accurately?
- 2. Do evolutionary and atmospheric models give consistent temperature estimates?
- 3. Do evolutionary models accurately predict near-infrared colors of ultracool dwarfs?

Trent Dupuy (IfA/Hawaii)

(1998); Gaidos (2000); Hünsch et al. (1999); Stelzer & Neuhäuser (2001); Soderblom et al. (1993a,b,c)

1. Do models predict the luminosity evolution of substellar objects accurately?

2. Do evolutionary and atmospheric models give consistent temperature estimates?

3. Do evolutionary models accurately predict near-infrared colors of ultracool dwarfs?

Substellar model tests

- 1. Do models predict the luminosity evolution of substellar objects accurately?
 - No: ~2–3× under-luminous
- 2. Do evolutionary and atmospheric models give consistent temperature estimates?
 - No: typically off by > 100 K
- 3. Do evolutionary models accurately predict near-infrared colors of ultracool dwarfs?
 - No: for JHK colors at all spectral types

Future model tests:

- 4. Do models predict the lithium depletion of substellar objects accurately?
 - young cluster ages (e.g., Pleiades)

Future model tests

- 4. Do models predict the lithium depletion of substellar objects accurately?
 - young cluster ages (e.g., Pleiades)
- Does the L/T transition (dust removal) depend on surface gravity?
 - dust physics in stars/BDs/planets

Future model tests:

- 4. Do models predict the lithium depletion of substellar objects accurately?
 - young cluster ages (e.g., Pleiades)
- 5. Does the L/T transition (dust removal) depend on surface gravity?
 - dust physics in stars/BDs/planets
- 6. Do orbital parameters (e.g., eccentricity) match brown dwarf formation models?

