Prevalence of AGN in Red-Sequence and Post-starburst Galaxies

Renbin Yan UC Berkeley

and the DEEP2 Team

The Origin of the Bi-modality

The Question:

What mechanism quenches the star formation in red galaxies and keeps them quenched?

Origin of Line Emission in Red Galaxies

Quiescent (w/o	48%
detectable emission)	
LINER	29-40%
Seyferts &	6-17%
Transition Objects	
Dusty	6%
Star-forming	

LINERs vs. Quiescent Galaxies

LINER galaxies have the same color-magnitude-concentration distribution as quiescent galaxies.

The LINER/Quiescent Sequence

- LINERs occupy the same color-magnitudeconcentration space as quiescent galaxies do. The combination of the two population defines a uniform red sequence.
- With spectral dating, it is found that galaxies with stronger LINER line emission has a younger stellar age. (Graves et al. 2006, in prep)
- The emerging scenario is that LINER might be fading with time. Is AGN activity even stronger in galaxies that have just been quenched?

Post-starburst Galaxies (aka K+A or E+A)

- Discovery
 First identifed by Dressler & Gunn 1983
- Definition
 - No ongoing star formation --- Lack of Emission lines
 - Recent star formation (within 1Gyr) --- Strong Balmer Absorption lines

Selections of Post-Starbursts

Using SDSS galaxy sample, Quintero et al. 2004 first pointed out that post-starburst galaxies stand out as a separate population in $H\alpha$ EW vs. f_A plot. But they do not stand out separately in [OII] EW (Yan et al. 2006)!

AGN/LINER-like emission in K+As

78% of post-starburst have detectable AGN emission vs.
46% in Red Sequence

Galaxies

Finding K+A galaxies in DEEP2 at z>0.7

- Using Hβ in place of Hα
- This limits the sample to 0.68 < z < 0.88
- Require M_B <-20.8 to ensure high s/n and low contamination rate.

Abundance evolution

The abundance of K+A galaxies brighter than $1.4L_B^*$ increases significantly with redshift. K+A fraction $\propto (1+z)^{4.1+/-0.4}$ (Yan et al. in prep)

The build-up of the Red Sequence

of L* red galaxies appears to change by $2\sim4x$ between z=1 and z=0.

The total comoving abundance

Rough estimates show K+A at z~0.8 could account for 15%-30% of the growth in red sequence population, but probably not all.

Faber et al. 2005

Environmental dependence

(Yan et al. in prep)

K+A galaxies at z~0.8 populate similar environments as blue, star-forming galaxies (probably their progenitors). This is consistent with Hogg et al.'s result on SDSS using similar selection criteria.

Past studies with selection using [OII] and/or smaller samples have shown contradictory results between different authors (Zabludoff et al. 1996, Balogh et al. 1999, Dressler et al. 1999, Tran et al. 2004, Blake et al. 2004).

Environmental dependence

(Yan et al. in prep)

K+A galaxies at z~0.8 populate similar environments as blue, star-forming galaxies (probably their progenitors). This is consistent with Hogg et al.'s result on SDSS using similar selection criteria.

Past studies with selection using [OII] and/or smaller samples have shown contradictory results between different authors (Zabludoff et al. 1996, Balogh et al. 1999, Dressler et al. 1999, Tran et al. 2004, Blake et al. 2004).

Post-starburst AGN spectra from DEEP2

Just like the local universe, ~70% of K+A galaxies at z~0.8 have [OII] and [OIII] detected. Mostly they have AGN-like line ratios. Thus these lines are NOT due to residual star formation, but probably AGN activity.

Conclusions

- 45% of red galaxies have line ratios typical of various types of AGNs. K +A galaxies have an even higher AGN frequency (73%).
- LINER-like galaxies are almost indistinguishable from quiescent galaxies in color-mag-concentration space. The combination of the two defines a uniform red sequence.
- K+A galaxies can only be distinguished from star-forming galaxies when using H α or H β as the star formation indicator. K+A samples defined using [OII] will be either incomplete or heavily contaminated.
- The abundance of K+A galaxies at z~0.8 is significantly higher than that in the local universe, but not enough to account for all the growth in red galaxy population.
- K+A galaxies are NOT preferentially found in high-density environments, instead, they show similar environmental dependence as star-forming galaxies.

For more details, see Yan et al. 2006 (astro-ph/0512446)