Optical and mid-infrared spectroscopy of MIPS sources in the NDWFS Bootes field

Vandana Desai

T. Soifer, C. Bian, L. Armus, H. Teplitz (Pasadena) A. Dey, B. Jannuzi, E. Le Floc'h, K. Brand (Tucson) D. Weedman, S. Higdon, J. Higdon, J. Houck (Ithaca) IRS, IRAC, MIPS Instrument Teams

What is the role of infrared sources in galaxy evolution?

IR galaxies are not significant today, but they were in the past

Papovich et al. 2004

Optical Spectroscopic Survey

Flux limit = 0.3 mJy

Area = 0.33 deg^2

Targeting completeness = 60% (548 targets)

Redshift completeness = 70%

Space density as a function of LIR and redshift

Also see Le Floch et al. 2005, Perez-Gonzalez et al. 2005; Caputi et al. 2006

What are the sources without redshifts?

Sources with redshfts

Sources without redshfts

SEDs of Extreme Sources

IRS results on extreme sources

1. IRS GTO Team: 58 sources with $f_v(24) > 0.8 \text{ mJy}$

z~2; Few PAH-dominated sources

2. Yan et al. GO1: 52 sources with fv(24) > 1 mJy AND R(24:8) > 0.5

z~2; 1/3 PAH-dominated sources

The brightest 24 micron sources tend to be AGN-dominated

What about the PAH-rich sources at z~2?

fv(24)=0.5-0.75 mJy ULIRGs

Far-IR SED: 70,160,350 micron observations pending

How well can we convert 24 micron flux to LIR at z=2?

Lots more data on this active phase coming down the pipe!

- Lin Yan's GO2 and GO3 IRS spectra

 GO2: Flux-limited > 1 mJy
 GO3: z=1 and z=2 faint samples
- Jiasheng Huang's z=3 sample

IR galaxies are not significant today, but they were in the past

Are extreme sources are off the chart?

